Visual Classification |:
Intro and Linear Methods
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Visual Classification

Object recognition: instance, category
Image classification vs object detection
Linear classification, CIFARI10 case study
2-class, N-class, linear + softmax regression



Object Recognition

® Object recognition with SIFT features [Lowe |999]

What is present? Where! VWhat orientation?



Object Recognition
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Classification and Detection

® C(lassification: Label per image, e.g., ImageNet
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® Detection: Label per region, e.g., PASCALVOC
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Segmentation

® Segmentation: Label per pixel, e.g.,, MS COCO
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Structured Image Understanding

® “Girl feeding large elephant”
® “A man taking a picture behind girl”

man \

visualgenome.org [ Krishna et al 2017 ]



Shape + Tracking

® Other vision applications might need shape modelling
(possibly deformable) and/or tracking in video

[ Zuffi et al 2017 ] [ SMPL Loper et al 2015 ]

We'll focus on single image classification today



Classification: Instance vs Category

Category of Aeroplanes [ Caltech 101 ] 9



Classification: Instance vs Category

Category of domestic cats

|10



Taxonomy of Cats

“ Mammals (Class Mammalia)

'+ Therians (Subclass Theria) Bengal T|ger
“+ Placental Mammals (Infraclass Placentalia) [Omveer ChOUdharY] '.:"

“» Ungulates, Carnivorans, and Allies (Superarder Laurasiatheria)

“+ Carnivorans (Order Carnivora)

Ocelot
[Jitze Couperus]

5 Felines (Family Felidae)

“» Small Cats (Subfamily Felinae) <

9+ Genus Felis
L+ Chinese Mountain Cat {reiis biet)

“» Domestic Cat (felis catus)
> Jungle Cat (Felis chaus) Eu ropean Wildca’t

[the wasp factory]
“  African Wildcat (relis lvbica)

“+ Sand Cat (re/s margarita)

“+ Black-footed Cat (relis nigrines)

“+ European Wildcat (reaiis silvestris) [ inatu I"a|iSt.OI"g ]I |


http://inaturalist.org
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WordNet

We can use language to organise visual categories

This is the approach taken in ImageNet [Deng et al 2009], which
uses the WordNet lexical database [wordnet.princeton.edu]

As in language, visual categories have complex relationships
e.g.,a ‘sail” is part of a “sailboat” which is a “watercraft”

e S: (n) sailboat, sailing boat (a small sailing vessel; usually with a single mast)
direct hyponym | full hyponym

e S: (n) catboat (a sailboat with a single mast set far forward)

e S: (n) sharpie (a shallow-draft sailboat with a sharp prow, flat
bottom, and triangular sail; formerly used along the northern
Atlantic coast of the United States)

e S: (n) trimaran (a fast sailboat with 3 parallel hulls)

part meronym
direct hypernym | inherited hypernym | sister term

e S: (n) sailing vessel, sailing_ship (a vessel that is powered by the

wind; often having several masts)

If we call a“sailboat” a watercraft, is this wrong? What if
we call it a “sail”?
k


http://wordnet.princeton.edu

Tiny Image Dataset

Precursor to ImageNet and CIFAR10/100

80 million images collected via image search using 75,062

noun synsets from VWordNet (labels are noisy)

Very small images (32x32xRGB) used to minimise storage
Note human performance is still quite good at this scale!

Correct recognition rate
= N W b OO O N 00O © O
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16 32 64 256
Image resolution
a) Scene recognition
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[ Torralba Freeman Fergus 2008 ] 14



CIFARI0 Dataset

® Hand labelled set of |0 categories from Tiny Images dataset
® 60,000 32x32 images in 10 classes (50k train, |0k test)
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Good test set for visual recognition problems




CIFAR 10O Classification

® |et’s build an image classifier!

3 2 I i I8 S 0 9 S s

airplane automobile bird deer horse ship truck

® Start by vectorizing the image data

32 x 32 x RGB (8 bit) image —
x =[65102335754...]

® x = 3072 element vector of 0-255

® Note this throws away spatial structure, we’'ll bring it back
later when we look at feature extraction and CNNs

Project 3: Image Classification using CIFARIO (Part |) .



Nearest Neighbour Classification

® Find nearest neighbour in training set
INN = argmin [xg — X;|
1
® Assign class to class of the nearest neighbour

?)(Xq) — y(XiNN)

=3

Calculate

X, — X
for all training data

|7



Nearest Neighbour Classification

® We can view each image as a point in a high dimensional space




Nearest Neighbour Classifier

(a) (b)

® What is the decision boundary for a nearest-neighbour
classifier?

4
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lk-NIN Classifier

® |dentify k nearest neighbours of the query
® Assign class as most common class in set
® [k-NN decision boundaries:

2

L7

0

2

L7

Good performance depends on suitable choice of k






Query

22



Tiny Image Recognition

® Recognition performance (categories vary in semantic level)

Geological Organism Animal Insect Fish Plant life Flower Artifact Vehicle Drug
formation (32) (658) (97) (29) (335) (58) )

detection rate

5
false alarm rate false alarm rate

Precision

» O

50 100 C0 50 100 CO 50 100 GO 50 100 OO 50 100 OO 50 100
Recall Recall Recall Recall Recall Recall Recall Recalll Recall Recall

= 7900, red = 790,000, blue = 79,000,000

Nearest neighbour becomes increasingly accurate as N increases,
but do we need to store a dataset of 80 million images!?
23



Nearest Mean Classification

® How about a single template per class

plane



Nearest Mean Classification

® Find nearest mean and assign class

¢, = arg min |x, — my|’
[/

® C|FAR 10 class means

airplane automobile bird deer horse ship truck

® Can we do better!?
® What is the best template for L2 matching?

25



Linear Classification

® Linear classification, 2-class, N-class
® Regularization, softmax, cross entropy
® 5GD, learning rate, momentum

26



Linear Classification

® |et’s start by using 2 classes, e.g., bird and plane
® Apply labels (y) to training set:

R

® Use a linear model to regress y from x

/@

27



2-class Linear Classification

® Separating hyperplane, projection to a line defined by w

plane

N\

y = sign h = sign w

T

Xq

28



N-class Linear Classification

® We could construct O(n?) | vs | classifiers

29



N-class Linear Classification

® We could regress directly to integer class id,y = {0,1,2,3...9}

30



One-Hot Regression

® A better solution is to regress to one-hot targets = | vs all
classifiers o L
T 0
$2 | | cLass Zb—.I |
automobile
X3 — 0
X4 0
_$1_ 0
L9 0
x3| — |0
’ class 4 =
L4 1 ¢
cat

31



One-Hot Regression

® Stack into matrix form

_ I R I 010
- X9 L9 1 0
W r3| | 3 — |00
_ d[Z4] |24 0|1

class 2 = class 4 =
‘automobile’ ‘cat

S K

’



One-Hot Regression

® Transpose (to match Project 3 notebook)

w3 iz e T 1T [o 1 0 o0 ..]auto
il [ T21 22 X233 .. W 1o o o 1 cat
r31 T32 X33
XW =T

® Solve regression problem by Least Squares

33



N-class Linear Classification

® One hot regression = | vs all classifiers

lane
P 3 L

car

. {1 E

34



One-Hot Regression

® Visualise class templates for the least squares solution

airplane automobile bird horse ship truck

® C(lassifier accuracy = 35% (not bad, c.f.,, nearest mean = 27%)

?_ What is happening here?

¥ |

35



Polynomial Fitting

® Consider fitting a polynomial to some data by linear
regression
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Polynomial Fitting

® Multiple data points (¥, z:)

2 3
Y1 = Qo —+ a1 —+ aQZIfl —+ CL3£I$1

_ 2 3
Yz = Apg T A1X2 T A2TL9 T A3T9

2 3
Ys = ap + A1T3 + a2x3 + G313

® |n matrix form

L _ ) 51 -
U1 1 =z x7 xj ao
2 3
ya | 1 zo x5 a5 a1
— 2 3
Y3 1 x3 x5 x3| |asg
as
y = Ma

® Solve linear system by Gaussian elimination (if square) or
Least Squares (if overconstrained)



Polynomial Fitting

® Fit Nth order polynomial by least squares

.

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

0.1

0

N =20

® Overfitting

38



Cross Validation

® Fit the model to a subset of data, and evaluate the fit on a held
out validation set

14r

2T

N

39



® Training error always decreases, but validation error has a

Cross Validation

minimum for the best model order

Mms error

0.45 -

0.4+

0.35

0.3

0.25

0.2+

015 F

0.1

0.05

validation

training

] 1 ] 1 1 1 1 1
2 4 B 3 10 12 14 16

Polynomial Order (N)

18

40



Polynomial Fitting

® For large N, coefficients become HUGE!

N=1 N=2 N=4 N=10
ap | 0.90 2.03 -2.88 48.50
a1 -1.54  29.76 -1294.90
a2 -07.43 14891.41
as 31.86 -95161.10
a4 367736.84
as -885436.68
ag 1331063.41
a7 -1212056.89
as 610930.32
a9 -130727.39

41



Regularization

® |2 penalty on polynomial coefficients

/@

42



Regularized Linear Regression

|0th order polynomial, prior on the coefficients weight A

14r
121

1+
08

06

| | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

log lambda = 0

Over-smoothing...

43



Under/Overfitting

® Jest error vs lambda

017

—training error

= test error

Fms error

-12 0 -2 -4 -6 -8 -10
log lambda

® Training error always decreases as lambda is reduced

® Test error reaches a minimum, then increases = overfitting
44



Regularized Classification

® Add regularization to CIFARIO linear classifier

® Row | = overfitting, Row 3 = oversmoothing?

45



Non-Linear Optimisation

® W/ith a linear predictor and L2 loss, we have a closed form
solution for model weights W

® How about this (non-linear) function
h = W5 max(0, W;x)

Previously (e.g., bundle adjustment), we locally linearised the
error function and iteratively solved linear problems

e = Z h,—t;|* ~ |[JAW+4r|*

AW = —(J' D)1 J'r

i~
[ 4 Does this look like a promising approach?

46



Gradient Descent

® |et’s try |st order optimization instead

® Even though we can solve our Linear L2 model in closed form,

we'll try it out with gradient descent

® |n stochastic gradient descent (SGD), we select a random
batch of data, compute the gradient, and take a step

® |2 loss for a single example x

/@

47



Learning Rate

® Controls the size of the gradient descent step

@&

ileralion




SGD + Momentum

® We can accelerate convergence of gradient descent using
momentum

g (68

49



Softmax + Logistic Outputs

® |inear regression to one-hot targets is a bit strange..

® Output could be very large, and scores >>1 are penalised
even for the correct class, ditto scores << | for incorrect

® How about restricting output scores to 0-1?

£ ()

50



Softmax + Cross Entropy

® What is the gradient of the softmax linear classifier?

® We could use L2 loss, but we’ll use cross entropy instead
® This has a sound motivation — it is a measure of the
difference between probability distributions

® [t also leads to a simple update rule

4

51



Linear + Softmax Regression

® We found the following gradient descent update rule
W, =W, —ah—t)x"

/TN

prediction targets data
® This applies to:

Linear regression h = W'x L2 loss

Softmax regression h = o(W?'x) cross-entropy loss

® The same update rule with a binary prediction function
h =1,..(W'x)

implements the multiclass Perceptron learning rule

52



History of the Perceptron

73 by Wi WU ey i
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[ I.'B.M. ltalia ]

This machine (IBM 704) was used by Frank Rosenblatt to
implement the perceptron in 1958

Based on his statements, the New York Times reported it as:

"the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself

and be conscious of its existence.’

53



2-class Perceptron Classifier

® (lassification function is

T

y = sign(w” x)

® Linear function of the data (x) followed by 0/I activation

® Update rule: present data x
- if correctly classified, do nothing
- if incorrectly classified, update the weight vector

Wypt1 = Wy + Y; X

54



Example of Perceptron Learning

55



Example of Perceptron Learning
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Example of Perceptron Learning

57



Example of Perceptron Learning

58



Example of Perceptron Learning

59



Example of Perceptron Learning

60



Perceptron Limitations

® Perceptrons + linear + softmax regressors are limited to data
that are linearly separable, e.g.,

¢
O OO \C\)\ E ,," n ++ .
O C\)\::\ ,”l " T 4 2:-
o © + o+ L
Oyt 4y
T |

Linearly separable Not linearly separable

L,

& How could we transform the RHS to be linearly separable’



CIFAR |10 Feature Extraction

® So far, we used RGB pixels as the input to our classifier
® Feature extraction can improve results by a lot

® e.g,Coates et al. achieve 79.6% accuracy on CIFARI0 with a

features based on k-means of whitened image patches

k-means, whitened

L L] Ll B
L | T Ll | o P
el | Fle i
W T el L
Frimi'DEsRL
1= Ss™3VIEE
B FRIE = 8
EIE I b 1™ S
] ]l Y = Y
'Y ITEAFETE

k-means, raw RGB
[ Coates et al. 2011 ]
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Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is
equivalent to a fully connected layer in a neural network

Q
S .

XOES
v *“ <
DR

® Typically, we'll also add a bias term b
h =0(W'x+Db)

63



Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is
equivalent to a fully connected layer in a neural network

® Typically, we'll also add a bias term b
h =0(W'x+Db)

64



Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is
equivalent to a fully connected layer in a neural network
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® Typically, we'll also add a bias term b

h=0c(W!x+Db)
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Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is
equivalent to a fully connected layer in a neural network
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® Typically, we'll also add a bias term b

h=0c(W!x+Db)
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Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is
equivalent to a fully connected layer in a neural network

w3

® Typically, we'll also add a bias term b
h =0(W'x+Db)

67



Next Lecture

® Visual Classification 2: Fundamentals + Pre-deep learning

68



