
Dense Methods 2:
Depth, Flow

CSE P576

Dr. Matthew Brown

Dense Methods 2: Depth, Flow
• Depth Imaging + Fusion, Signed Distance Functions

• Non-Rigid matching, Optical Flow, Lucas Kanade

2

Depth Image Fusion
• How can we combine multiple depth scans?

3[KinectFusion Izadi et al]

4

Problem: How to Combine Depth Images
into a Complete Model?

[Extracted from KinectFusion. Newcombe et al, 2011]

[Slides from Richard Newcombe and Steven Lovegrove]

5

Reconstructed
Surfaces

Merging depth maps

Depth map 1 Depth map 2 Combination (Union)

� Naïve combination (union) produces artifacts
� Better solXtion: find ³aYerage´ sXrface

� Î Surface that minimizes sum (of squared) distances to the depth maps

[From Curless & Levoy, 1996]

6

Least squares surface solution

E(f) di
2

i 1

N

¦ (x, f)³ dx
[Slide from Seitz, UW CSEP576]

7

Representing Geometry Implicitly

Signed Distance Functions

8

Example: Truncated Signed Distance Function
(TSDF)

[Newcombe, 2015]

9

Representing Scenes with TSDF

[KinectFusion, Newcombe et al, 2011]

10

A Single Ray Observation in TSDF

11

Ray Observations in TSDF

True Scene
DepthSDF Value

0

1

2

3

-3

-2

-1
Distance
along ray

12

Fusing Noisy Ray Observations in TSDF

True Scene
DepthSDF Value

0

1

2

3

-3

-2

-1
Distance
along ray

Noisy Depth
Measurements

Average of the
Noisy

Measurements

Estimated
Scene Depth

5.6

13

VRIP [Curless & Levoy 1996]

depth map 1 depth map 2 combination

signed
distance
function

isosurface
extraction

14

Michael Goesele

16 images (ring)47 images (ring)

Merging Depth Maps: Temple Model

317 images
(hemisphere)

input image ground truth model

Goesele, Curless, Seitz, 2006

15

Application: Multi-view stereo from Internet Collections
[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007]

16

KinectFusion: Dense Surface Tracking and Mapping in Real-Time

� Uses an RGB-D Sensor

� First Dense SLAM System

� Interleaves:
1. TSDF Fusion (Map)
2. Projective ICP (Track)

� Efficient to implement on
GPU Compute Architecture

� Memory for Scene is O(N^3)

Newcombe, Izadi et al

Iterated Closest Point
• Estimate camera pose from unmatched point clouds

17

General 6DOF depth tracking (ICP)

[From KinectFusion: Newcombe et al , 2011]

• Assign points in the scan yellow to closest model point red

• Compute pose (R,t) of the scanner using correspondences

• Re-assign closest points and iterate until converged

2-view Rigid Matching
• 1D search, points constrained to lie along epipolar lines

18

2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

19[vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

20[vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

21[vision.middlebury.edu/flow]

http://vision.middlebury.edu/flow

2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

22[vision.middlebury.edu/flow]

x
u

x

http://vision.middlebury.edu/flow

Optical Flow: Example 1

23

x
u

u

x

Optical Flow: Example 2

24[Brox Malik 2011]

Lucas Kanade
• The previous algorithm performed a discrete search over

displacements/flow vectors u
• We can do better by looking at the structure of the error

surface:

25

396 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a)

(b)

(c)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image:
(a) highly textured area, strong minimum, low uncertainty; (b) strong edge, aperture prob-
lem, high uncertainty in one direction; (c) weak texture, no clear minimum, large uncertainty.

u

I1(x)I0(x)

5.7

e = |I1(x+ u)� I0(x)|2

• This is the Lucas-Kanade algorithm for 2D image flow

26

Lucas Kanade

Try out LucasKanade.ipynb from the course
webpage

Flow at a pixel
• Look at previous equation at a single pixel:

27

@I1
@x

T

�u = I0(x)� I1(x)

5.8

Flow Ambiguity

28

• The stripes can be interpreted
as moving vertically, horizontally
(rotation), or somewhere in
between!

• The component of velocity
parallel to the edge is unknown

eHS =
X✓

@I

@t
+rITv

◆2

+ ↵|�v|2= 0

• Optical Flow Constraint:

Horn-Schunk
• The optical flow constraint gives 1 equation per pixel to solve

for the velocity field (2 parameters per pixel)

29

382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.

382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.

We can use other considerations, such as smoothness,
to find a plausible velocity field, e.g.,

[Horn Schunck 1981, Szeliski p395]

eHS =
X✓

@I

@t
+rITv

◆2

+ ↵|�v|2

Brightness Constancy
• All the methods presented in this lecture have relied on the

assumption that

30

• This is called the brightness constancy assumption

• Taylor expansion for small motion at a single pixel = optical
flow constraint

• Horn-Schunk = optical flow constraint + smoothing over u
• Lucas-Kanade = brightness constancy over patches with

gradient based search for u

I1(x+ u) ⇡ I0(x)

Next Lecture
• Visual Recognition, Linear Classification

31

