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Dense Methods 2: Depth, Flow
• Depth Imaging + Fusion, Signed Distance Functions

• Non-Rigid matching, Optical Flow, Lucas Kanade
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Depth Image Fusion
• How can we combine multiple depth scans?

3[ KinectFusion Izadi et al ]
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Problem: How to Combine Depth Images 
into a Complete Model?

[Extracted from KinectFusion. Newcombe et al, 2011]

[ Slides from Richard Newcombe and Steven Lovegrove ]
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Reconstructed 
Surfaces

Merging depth maps

Depth map 1 Depth map 2 Combination (Union)

� Naïve combination (union) produces artifacts
� Better solXtion:  find ³aYerage´ sXrface

� Î Surface that minimizes sum (of squared) distances to the depth maps

[From Curless & Levoy, 1996]
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Least squares surface solution

E( f )  di
2

i 1

N

¦ (x, f )³ dx
[Slide from Seitz, UW CSEP576]
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Representing Geometry Implicitly

Signed Distance Functions
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Example: Truncated Signed Distance Function 
(TSDF)

[Newcombe, 2015]
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Representing Scenes with TSDF

[KinectFusion, Newcombe et al, 2011]
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A Single Ray Observation in TSDF
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Ray Observations in TSDF
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Fusing Noisy Ray Observations in TSDF
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VRIP [Curless & Levoy 1996]

depth map 1 depth map 2 combination

signed
distance
function

isosurface
extraction
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Michael Goesele

16 images (ring)47 images (ring)

Merging Depth Maps: Temple Model

317 images
(hemisphere)

input image ground truth model

Goesele, Curless, Seitz, 2006
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Application: Multi-view stereo from Internet Collections
[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007] 
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KinectFusion: Dense Surface Tracking and Mapping in Real-Time

� Uses an RGB-D Sensor

� First Dense SLAM System

� Interleaves:
1. TSDF Fusion (Map)
2. Projective ICP (Track)

� Efficient to implement on 
GPU Compute Architecture

� Memory for Scene is O(N^3)

Newcombe, Izadi et al



Iterated Closest Point
• Estimate camera pose from unmatched point clouds

17

General 6DOF depth tracking (ICP)

[From KinectFusion: Newcombe et al , 2011]

• Assign points in the scan yellow to closest model point red

• Compute pose (R,t) of the scanner using correspondences

• Re-assign closest points and iterate until converged 



2-view Rigid Matching
• 1D search, points constrained to lie along epipolar lines
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2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

19[ vision.middlebury.edu/flow ]

http://vision.middlebury.edu/flow
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2-view Non-Rigid Matching
• 2D search, points can move anywhere in the image

22[ vision.middlebury.edu/flow ]
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http://vision.middlebury.edu/flow


Optical Flow: Example 1
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Optical Flow: Example 2

24[ Brox Malik 2011 ]



Lucas Kanade
• The previous algorithm performed a discrete search over 

displacements/flow vectors u
• We can do better by looking at the structure of the error 

surface:
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396 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a)

(b)

(c)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image:
(a) highly textured area, strong minimum, low uncertainty; (b) strong edge, aperture prob-
lem, high uncertainty in one direction; (c) weak texture, no clear minimum, large uncertainty.

   

   

 

   

   

 

u

I1(x)I0(x)

5.7

e = |I1(x+ u)� I0(x)|2



• This is the Lucas-Kanade algorithm for 2D image flow
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Lucas Kanade

Try out LucasKanade.ipynb from the course 
webpage



Flow at a pixel
• Look at previous equation at a single pixel:
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@I1
@x

T

�u = I0(x)� I1(x)

5.8



Flow Ambiguity
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• The stripes can be interpreted 
as moving vertically, horizontally 
(rotation), or somewhere in 
between!

• The component of velocity 
parallel to the edge is unknown

eHS =
X✓

@I

@t
+rITv

◆2

+ ↵|�v|2= 0

• Optical Flow Constraint:



Horn-Schunk
• The optical flow constraint gives 1 equation per pixel to solve 

for the velocity field (2 parameters per pixel)
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382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkel-
mann 1986) c� 1986 IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c�
1994 IEEE; (e–f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) c� 2007 IEEE.
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We can use other considerations, such as smoothness, 
to find a plausible velocity field, e.g., 

[ Horn Schunck 1981, Szeliski p395 ] 

eHS =
X✓
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Brightness Constancy
• All the methods presented in this lecture have relied on the 

assumption that
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• This is called the brightness constancy assumption

• Taylor expansion for small motion at a single pixel = optical 
flow constraint

• Horn-Schunk = optical flow constraint + smoothing over u
• Lucas-Kanade = brightness constancy over patches with 

gradient based search for u

I1(x+ u) ⇡ I0(x)



Next Lecture
• Visual Recognition, Linear Classification
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