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Dense Methods |: Stereo

® Stereo matching, local + global optimization
® Multi-view stereo, geometry representations
® Photometric Stereo



Application: Photo Collections— 3D

® Generate detailed 3D
model (e.g., depth values
at every pixel in input
images)

[Y. Furukawa PMVS ]




Application: Remote Sensing
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[ NASA/JPL ]

Mars Reconnaissance Orbiter

Launched 2005, ~13 orbits / earth day

HIRISE camera pixels are |y radian (0.3m at 300km)
MARCI camera has 5 visible + 2 UV bands, lower res



Application: Remote Sensing

® Martian surface elevation map
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Application: Remote Sensing

® Martian surface detail

Image credit: NASA / JPL-Caltech / UA / Kevin M. Gill




Epipolar Geometry

® A point in one view may lie on a line in the 2nd

X7
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(Ul,m) (Uz,vz)?

Position in image 2 depends on the depth of the 3D point



2-view Stereo

® Camera motion only, points constrained to epipolar lines

| D Search



Stereo Camera Configuration

® Humans and many stereo cameras have parallel optical axes

[ J.Elson] o



Axis Aligned Stereo

® A common stereo configuration has camera optical axes
aligned, with cameras related by a translation in the x
direction
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Stereo Matching

® |n a standard stereo setup, where cameras are related by
translation in the x direction, epipolar lines are horizontal

® Stereo algorithms search along scanlines for matches

® Distance along the scanline (difference in x coordinate) for a
corresponding feature is called disparity

/@

[ D.Scharstein] !



Disparity and Depth: R
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Disparity and Depth: L
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Disparity and Depth R+L
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Effect of Window Size

® |arger windows — smoothed result

W=3 W=l 1 W=25
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Anaglyph

® Stereo pair with images encoded in different color channels

|6



Stereo Displays

® Field sequential (shutter) glasses transmit alternate left/right
image at |120Hz

Screen _

Lenticular-
lens

Left eye O

Right eye

v/

Lenticular lenses send

different images directly to

each eye, without the need
for glasses

|7



Stereo Displays

® VR headsets send L/R images directly to each eye

[ Google Cardboard ] g



Stereo Rectification

® |f the optical axes are not alighed, we can rotate the images
(homography) until they are perpendicular to the baseline
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Stereo Rectification

® Transform (rotate) images so that epipolar lines are horizontal

[ Loop Zhang 1999 ] 20



Occlusions

® Sometimes a point in image | does not appear in image 2, or
vice-versa (this is called an occlusion)
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Edge Aware Stereo

® Occlusions and depth discontinuities cause problems for
stereo matching, as aggregation windows overlap multiple
depths
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® Segmentation-based stereo approaches aim to solve this by
trying to guess the depth edges (e.g., joint segmentation and
depth estimation [ Taguchi et al 2008 ])
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Ordering Constraint

® |f point B is to the right of point A in image |, the same is
usually true in image 2
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Not always, e.g., if an object
is wholly within the ray

triangle generated by A -



Occlusions + Ordering

® Note that the ordering constraint is still maintained in the
presence of occlusions
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Optimal Scanline Mapping

® We can imagine a mapping between left and right scanlines

® |f we assume the ordering constraint this must be monotonic,
but there may be step changes (due to occlusions)

® How can we find the best monotonic sequence mapping left
to right scanlines?

Left scanline

Right scanline

25



Dynamic Programming

® At each point, we may make one of 3 moves: left/right

occlusion (higher cost), or sequential correspondence (lower
cost based on patch SSD)

Left scanline

\ Look for a path from

top left to bottom right

\ with the lowest cost

[ Cox etal 1996] 26
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Dynamic Programming

® We need not consider all possible paths, as we only need to
know the lowest cost path for reaching each state

£ (3

Left scanline

S

Scan over grid finding
min-cost paths and
backtrack from the end

quIjueds Y3y

[ Cox etal 1996 ] 27



Stereo Cost Functions

® Energy function for stereo matching based on disparity d(x,y)
Sum of data and smoothness terms

E(d) = Ea(d) + AE,(d)

® Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

Ed(d) — Z C(Qj,y,d(f,y))

(z,y)

® Smoothness cost penalises disparity changes with robust p(.)

Ey(d) = pld(z,y) —d(z +1,y)) + p(d(z,y) — d(z,y + 1))

(z,y)

® This is a Markov Random Field (MRF), which can be solved

using techniques such as Graph Cuts
[ Szeliski B5 ] g



Stereo Comparison

® Global vs Scanline vs Local optimization

Ground Graph Cuts Dynamic SSD 21 px

truth [ Kolmogorov Programming aggregation
Zabih 2001]

[ Scharstein Szeliski 2002 ]



Multiview Stereo

® Plane sweep, volumetric, depth map merging

[ Szeliski 1.6 ]
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Multiview Stereo

® Use information from
N>2 views to form a
dense 3D reconstruction

[ Y. Furukawa PMVS ]




Multiview Stereo

® Search along epipolar lines to find good matches in N views

32






Plane Sweep Stereo
d=N

34



Plane Sweep Stereo

® Warp images using a set of planes in front of the camera
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Plane Sweep Stereo

® Warp images using a set of planes in front of the camera

Try out PlaneSweep. ipynb from the course webpage
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Volumetric Stereo

® Discretise the scene using a grid of voxels
® |nfer occupancy and colour of voxels by projecting to images
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® |dea: visit all voxels in order; keep only photo-consistent voxels

[ Seitz Dyer 1997 ] 3g

What is wrong with this idea!?
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Space Carving

® Space carving finds a voxel reconstruction that is consistent
with the input images, taking into account visibility

Image 1 \ / Image N

Initialise a volume containing the true scene

Choose a voxel v on the surface

Project v to all views where visible

If v is not photo-consistent, remove it from the volume
Repeat until all voxels are photo-consistent

[ Kutulakos Seitz 2000 ] 34



~ | k voxels ~70k voxels




Silhouette Intersection

® Consider the case of binary images (silhouettes)
® Voxel is part of the object if it lies in the silhouette in all views

Project volumes from each Voxel reconstruction
silhouette back into scene is larger than object

and intersect [ Seitz / Lazebnik ] 4



Silhouette Intersection

® The intersection of back-projected silhouettes is called the
visual hull, it is more accurate with increasing # views
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[ Ben Tordoff /

| camera 3 cameras
Mathworks]
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Depth Map Merging

® |dea: Nearby images have the most reliable stereo matches

® |f we have a lot of images/pixels, we may not need to perform
wide baseline matching

[ http://vision.middlebury.edu/mview ] 43



http://vision.middlebury.edu/mview

Depth Map Merging

® Select subsets of images and compute high confidence depth
maps (e.g., keep only low SSD matches)

® Merge depth maps using robust fusion, e.g., using signed
distance functions [ Curless Levoy 1996 ]

temple

sample

dino

input image 16 images 48 images 363 images

[ Goesele Curless Seitz 2006 ] 44



Photo Collections— 3D

® Depth map merging is practical for photo collections:
® Adaptable to complex geometry and large-scale scenes

® Robust to varied imagery and noise — select only subsets
with good matches (don’t try to match everything)

[ N. Snavely, M. Goesele | 4



Neural Scene Representation

® Neural Radiance Fields, ~10s of input views

matthewtancik.com/nerf 46



http://matthewtancik.com/nerf

Photometric Stereo

® We can also get 3D information about the scene using one
camera and multiple lights

® The most straightforward case of photometric stereo is to
assume Lambertian reflectance

/®
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Photometric Stereo by Example

® Use object of known geometry, match colour patterns

[ Hertzmann Seitz 2003 ] 48



Non-rigid Photometric Stereo
with Colored Lights

C. Hernandez', G. Vogiatzis', G.J. Brostow?,
B. Stenger' and R. Cipolla?

Toshiba Research Cambridge1

University of Cambridge2



® Depth, Flow

Next Lecture
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