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Image Alignment

® Aim: warp our images together using a 2D transformation




Image Alignment

® Aim: warp our images together using a 2D transformation




Image Alignment

® Find corresponding (matching) points between the images




Image Alignment

® Compute the transformation to align the points




Image Alignment

We can also use this transformation to reject outliers




Image Alignment

® We can also use this transformation to reject outliers




Planar Geometry

® 2D Linear + Projective transformations
- Euclidean, Similarity, Affine, Homography

® Linear + Projective Cameras
- Viewing a plane, rotating about a point
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2D Transformati

ons

® We will look at a family that can be represented by 3x3

matrices
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Affine Transformations

® Transformed points are a linear function of the input points
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® This can be written as a single matrix multiplication
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Linear Transformations

® Consider the action of the unit square under

S = W

O DN =




Linear Transform Examples

FOINVY,

Translation, rotation, scale, shear (parallel lines preserved)

/A<

These transforms are not affine (parallel lines not preserved)
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Linear Transformations

® Consider a single point correspondence

Y1 | = (a21 a22 423 Y1
1 0 0 1 1

How many points are needed to solve for a?



Computing Affine Transforms

® | ets compute an affine transform from correspondences:
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® Re-arrange unknowns into a vector
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Computing Affine Transforms

® |inear system in the unknown parameters a
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® Of the form
Ma =y

Solve for a using Gaussian Elimination
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Computing Affine Transforms

® We can now map any other points between the two images
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Computing Affine Transforms

® Or resample one image in the coordinate system of the other

This allows us to “stitch”
the two images
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Linear Transformations

® Other linear transforms are special cases of affine
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Alignment




Face Alignment




Face Alignment




2D Transformations

Transformation Matrix # DoF Preserves Icon
translation [ I ‘ t } 2 orientation
2X3
rigid (Euclidean) [ R|t } 3 lengths Q
2X3
similarity { sR ‘ t } 4 angles Q
2X3
affine { A } 6 parallelism E
2X3
projective [ H } 3 straight lines E‘
3X3
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Projective Transformation

® General 3x3 matrix transformation (note need scale factor)
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Project 2

® Try out the Image Warping Test section in Project 2,
particularly similarity, affine and projective transforms.You can
also try warping with the inverse transform, e.g., using
P=np.linalg.inv(P)
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Camera Models + Geometry

ST

® Pinhole camera, rigid body coordinate transforms
® Perspective, projective, linear/affine models

® Properties of cameras: viewing parallel lines, viewing a scene
plane, rotating about a point

[T.Bacha] .



Pinhole Camera

® Put the projection plane in front to avoid the 180° rotation
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® Note that XY Z. are camera coordinates
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Perspective Camera

® Transform world to camera, to image coordinates
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camera
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Projective Camera

® Perspective camera equation

® Multiply and drop constraints to get a general 3x4 matrix
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How many degrees of freedom do these 2 models have!
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This is called a projective camera
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Linear Camera

® /ero out bottom row to eliminate perspective division
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Linear a.k.a. affine camera



Linear vs Projective Cameras

® Consider a linear / affine camera viewing parallel world lines
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Linear vs Projective Cameras

ST <=mme-
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Ay

Parallelism preserved if depth variation in scene << depth of scene
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Viewing a Plane

® Consider a pair of cameras viewing a plane
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Without loss of generality, we can make it the world plane Z=0 _,



Viewing a Plane

® Viewing the plane Z=0 with projective + linear cameras
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Projective Homography

L _ - [ x _ L
u P11 P12 Pie| |y pui P12 pua| | X
S|v| = |Pz P2 Pfs Pu| |g| = P2 P2 P2 Y
1l o o L)Y Looo ][

Linear (2d) Affine




Viewing a Plane

® Consider a pair of cameras viewing a plane
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Scene Plane

® What is the form of H in terms of scene parameters!
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Camera Rotation

® What is the form of H in terms of scene parameters!
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4

Hint: try setting t=0 in either the perspective
camera or scene plane homography equations
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Radial Distortion

® |n perspective (rectilinear) projection, straight lines in the
world map to straight lines in the image, but many real
imagers exhibit distortion towards the image edges

“barrel” “pin cushion”

® A common first order model is X' = (1 —+ K‘XP)X

® Wide-angle imagers may have very different projection
models, e.g., for equidistant fisheye 10 ¢ £
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e RANSAC

Next Lecture
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