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Correspondence Problem
• A basic problem in Computer Vision is to establish matches 

(correspondences) between images

• This has many applications: rigid/non-rigid tracking, object 
recognition, image registration, structure from motion, 
stereo...
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Feature Detectors
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206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.
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Feature Descriptors
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Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch
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Features and Matching
• Feature detectors

- Canny edges, Harris corners, DoG, MSERs

• Feature descriptors
- Image patches, invariance, SIFT, learned features

5[ Szeliski Chapter 4 ]



Edge Detection
• One of the first algorithms in Computer Vision

6

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.



Edge Detection
• Consider edge detection for a 1D signal
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6 Engineering Part IIB: 4F12 Feature Extraction

1D edge detection

We start with the simple case of edge detection in
one dimension. When developing an edge detec-
tion algorithm, it is important to bear in mind the
invariable presence of image noise. Consider this
signal I(x) with an obvious edge.
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An intuitive approach to edge detection might be
to look for maxima and minima in I ′(x).
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This simple strategy is defeated by noise. For this
reason, all edge detectors start by smoothing the
signal to suppress noise. The most common ap-
proach is to use a Gaussian filter.

[ Slide credits: R. Cipolla ]
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This simple strategy is defeated by noise. For this
reason, all edge detectors start by smoothing the
signal to suppress noise. The most common ap-
proach is to use a Gaussian filter.

• Naive approach: look for maxima/minima in 

I(x)

I 0(x)

What’s the problem?



Edge Detection
• Solution: start by smoothing the image to remove noise
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Feature Extraction 7

1D edge detection

A broad overview of 1D edge detection is:

1. Convolve the signal I(x) with a Gaussian kernel
gσ(x). Call the smoothed signal s(x).

gσ(x) =
1

σ
√

2π
exp

(

−
x2

2σ2

)

2. Compute s′(x), the derivative of s(x).

3. Find maxima and minima of s′(x).

4. Use thresholding on the magnitude of the ex-
trema to mark edges.
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s(x) = I(x) ⇤ k(x)

s0(x)

= image

= kernel

= smoothed
derivative

Edges are found by thresholding the smoothed derivative



2D Edge Detection
• Smooth image and convolve with [-1 1]
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Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

gx gy

rI =


gx
gy

�
2D gradient:



2D Edge Detection
• Look at the magnitude of the smoothed gradient

10

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|
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• Non-maximal suppression (keep only points where             
is a maximum in directions          )

|rI|

|rI| =
q

g2x + g2y

|rI|
±rI

[ Canny 1986 ]
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2D Edge Detection
• Threshold the gradient magnitude with two thresholds: Thigh 

and Tlow

• Edges start at edge locations with gradient magnitude > Thigh

• Continue tracing edge until gradient magnitude falls below Tlow

12

Feature Extraction 15

2D edge detection

The next stage of the edge detection algorithm
is non-maximal suppression. Edge elements,
or edgels, are placed at locations where |∇S| is
greater than local values of |∇S| in the directions
±∇S. This aims to ensure that all edgels are lo-
cated at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only
those with |∇S| above a certain value are retained.

(d) Thresholding

Feature Extraction 15

2D edge detection

The next stage of the edge detection algorithm
is non-maximal suppression. Edge elements,
or edgels, are placed at locations where |∇S| is
greater than local values of |∇S| in the directions
±∇S. This aims to ensure that all edgels are lo-
cated at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only
those with |∇S| above a certain value are retained.

(d) ThresholdingThresholdedNon-MS

[ Canny 1986 ]



Edges + Segmentation
• Segmentation is subjective [ Martin, Fowlkes, Tal, Malik 2001 ]
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Image Structure
• What kind of structures are present in the image locally?

14

0D Structure: not useful for matching

1D Structure: edge, can be localised in one 
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be 
localised in both directions, good for matching

Edge detectors fi nd contours (1D structure), Corner or 
Interest point detectors fi nd points with 2D structure.



Local SSD Function
• Consider the sum squared difference (SSD) of a patch with 

its local neighbourhood

15

�x1

�x2

x =


x1

x2

�

SSD =
X

R
|I(x)� I(x+�x)|2



Local SSD Function
• Consider the local SSD function for different patches

16

4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.
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Clear peak in similarity function

High similarity along the edge

High similarity locally



Harris Corners
• Harris corners are peaks of a local similarity function

17



Harris Corners
• We will use a first order approximation to the local SSD 

function

18

�x1

�x2

2.5

SSD =
X

R
|I(x)� I(x+�x)|2



Harris Corners
• Corners matched using correlation

19

99 inliers 89 outliers

[ Zhang, Deriche, Faugeras, Luong 1995,  Beardsley, Torr,  Zisserman 1996 ]



Difference of Gaussian
• DoG = centre-surround filter

20

=⇤

• Find local-maxima of the centre surround response 

Non-maximal suppression: 
These points are maxima 

in a 10 pixel radius



Difference of Gaussian
• DoG detects blobs at scale that depends on the Gaussian 

standard deviation(s)

21
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red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

Note: DOG ≈ Laplacian of Gaussian



Detection Scale 
• Smoothing standard deviations determine scale of detected 

features, e.g., edge detection in cloth

22

12 Engineering Part IIB: 4F12 Feature Extraction

Multi-scale edge detection

The amount of smoothing controls the scale at
which we analyse the image. There is no right or
wrong size for the Gaussian kernel: it all depends
on the scale we’re interested in.

Modest smoothing (a Gaussian kernel with small σ)
brings out edges at a fine scale. More smoothing
(larger σ) identifies edges at larger scales, suppress-
ing the finer detail.

This is an image of a dish cloth.
After edge detection, we see
different features at different
scales.

σ = 1 σ = 5

Fine scale edge detection is particularly sensitive
to noise. This is less of an issue when analysing
images at coarse scales.
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Multi-scale edge detection

The amount of smoothing controls the scale at
which we analyse the image. There is no right or
wrong size for the Gaussian kernel: it all depends
on the scale we’re interested in.

Modest smoothing (a Gaussian kernel with small σ)
brings out edges at a fine scale. More smoothing
(larger σ) identifies edges at larger scales, suppress-
ing the finer detail.

This is an image of a dish cloth.
After edge detection, we see
different features at different
scales.

σ = 1 σ = 5

Fine scale edge detection is particularly sensitive
to noise. This is less of an issue when analysing
images at coarse scales.

• Many algorithms use multi-scale architectures to get around 
this problem

• e.g., Scale-Invariant Feature Transform “SIFT”



MSERS
• Maximally Stable Extremal Regions

23

4.1 Points and patches 221

Figure 4.15 Maximally stable extremal regions (MSERs) extracted and matched from a
number of images (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier.

Figure 4.16 Feature matching: how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish correct correspon-
dences?

are therefore invariant to both affine geometric and photometric (linear bias-gain or smooth
monotonic) transformations (Figure 4.15). If desired, an affine coordinate frame can be fit to
each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-
ery year at major computer vision conferences (Xiao and Shah 2003; Koethe 2003; Carneiro
and Jepson 2005; Kenney, Zuliani, and Manjunath 2005; Bay, Tuytelaars, and Van Gool 2006;
Platel, Balmachnova, Florack et al. 2006; Rosten and Drummond 2006). Mikolajczyk, Tuyte-
laars, Schmid et al. (2005) survey a number of popular affine region detectors and provide
experimental comparisons of their invariance to common image transformations such as scal-
ing, rotations, noise, and blur. These experimental results, code, and pointers to the surveyed
papers can be found on their Web site at http://www.robots.ox.ac.uk/⇠vgg/research/affine/.

Of course, keypoints are not the only features that can be used for registering images.
Zoghlami, Faugeras, and Deriche (1997) use line segments as well as point-like features to
estimate homographies between pairs of images, whereas Bartoli, Coquerelle, and Sturm
(2004) use line segments with local correspondences along the edges to extract 3D structure
and motion. Tuytelaars and Van Gool (2004) use affine invariant regions to detect corre-
spondences for wide baseline stereo matching, whereas Kadir, Zisserman, and Brady (2004)
detect salient regions where patch entropy and its rate of change with scale are locally max-
imal. Corso and Hager (2005) use a related technique to fit 2D oriented Gaussian kernels
to homogeneous regions. More details on techniques for finding and matching curves, lines,
and regions can be found later in this chapter.

• Find regions of high contrast using a watershed approach

MSERS are stable (small change) over a large range of thresholds

[ Matas et al 2002 ]



Project 1

• Try the Interest Point Extractor section in Project 1

• corner_function :  Devise a corner strength function

• find_local_maxima :  Find interest points as maxima of 
the corner strength function

24

P1



Corner Matching
• A simple approach to correspondence is to match corners 

between images using normalised correlation or SSD

25

2.6



Breaking Correlation
• Correlation/SSD works well when the images are quite similar 

(e.g., tracking in frames of a video)

• However, it is easily broken by simple image transforms, e.g., 

26

Original Rotation Scale

• These transformations are very common in imaging, so we 
would like feature matching to be invariant to them



Local Coordinate Frame
• One way to achieve invariance is to use local coordinate 

frames that follow the surface transformation

27



Detecting Scale/Orientation
• A common approach is to detect a local scale and orientation 

for each feature point

28

4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) c� 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H =

"
Dxx Dxy

Dxy Dyy

#
, (4.12)

and then rejecting keypoints for which

Tr(H)
2

Det(H)
> 10. (4.13)

e.g., extract Harris at multiple scales and align to the local gradient



Detecting Scale/Orientation
• Patch matching can be improved by using scale/orientation 

and brightness normalisation

29

40 px

8 pixels

Sampling at a coarser scale than detection further 
improves robustness



Panorama Alignment

30



Wide Baseline Matching
• Patch-based matching works well for short baselines, but fails 

for large changes in scale, rotation or 3D viewpoint

31
What factors cause differences between these images?



Wide Baseline Matching
• We would like to match patches despite these changes

32

What features of the local patch are invariant?



Scale Invariant Feature Transform
• A detector and descriptor designed for object recognition 

33

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
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• SIFT features are invariant to translation, rotation and scale 
and slowly varying under perspective and 3D distortion

• Variants widely used in object recognition, image search etc.

[ Lowe 1999 ]



Scale Invariant Feature Transform

34

• Scale invariant detection and local orientation estimation

• Edge based representation that is robust to local shifting 
of edges (parallax and/or stretch)

[ vlfeat.org ]

http://vlfeat.org


SIFT Detection
• Convolve with centre-surround Laplacian/DoG filter

35

=⇤

• Find all maxima at all scales in a Laplacian Pyramid



Scale Selection
• A DOG (Laplacian) Pyramid is formed with multiple scales 

per ocatve
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Detections are local
maxima in a 3x3x3
scale-space window
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant
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Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
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possible image functions, such as the gradient, Hessian, or Harris corner function.
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Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 2

1/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.



Scale Selection
• Maximising the DOG function in scale as well as space 

performs scale selection
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12 Lindeberg

original image scale-space maxima of (�2
normL)2

(traceHnormL)2 (detHnormL)2

Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.

(traceHnormL)2 (detHnormL)2

Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).

[ T. Lindeberg ]



Orientation Selection
• To select a local orientation, build a histogram over orientation
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4.1 Points and patches 219

Figure 4.12 A dominant orientation estimate can be computed by creating a histogram of
all the gradient orientations (weighted by their magnitudes or after thresholding out small
gradients) and then finding the significant peaks in this distribution (Lowe 2004) c� 2004
Springer.

A better method is to estimate a dominant orientation at each detected keypoint. Once
the local orientation and scale of a keypoint have been estimated, a scaled and oriented patch
around the detected point can be extracted and used to form a feature descriptor (Figures 4.10
and 4.17).

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting function is used (Brown, Szeliski, and Winder 2005),
this average gradient is equivalent to a first-order steerable filter (Section 3.2.3), i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of Gaus-
sian filter (Freeman and Adelson 1991). In order to make this estimate more reliable, it is
usually preferable to use a larger aggregation window (Gaussian kernel size) than detection
window (Brown, Szeliski, and Winder 2005). The orientations of the square boxes shown in
Figure 4.10 were computed using this technique.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
an unreliable indicator of orientation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
of edge orientations weighted by both gradient magnitude and Gaussian distance to the cen-
ter, finds all peaks within 80% of the global maximum, and then computes a more accurate
orientation estimate using a three-bin parabolic fit (Figure 4.12).

Affine invariance

While scale and rotation invariance are highly desirable, for many applications such as wide
baseline stereo matching (Pritchett and Zisserman 1998; Schaffalitzky and Zisserman 2002)
or location recognition (Chum, Philbin, Sivic et al. 2007), full affine invariance is preferred.
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an unreliable indicator of orientation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
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SIFT Descriptor
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• We selected a scale and orientation at each detection, 

• Now need descriptor to represent the local region in a 
way robust to parallax, illumination change etc.



Simple + Complex Cells in V1

40[ Hubel and Wiesel ]

• Neuroscientists have 
investigated the response 
of cells in the primary 
visual cortex

• “Complex Cells” in V1 respond 
over a range of positions but are 
highly sensitive to orientation



SIFT Descriptor
• Describe local region by distribution (over angle) of gradients

41Each descriptor: 4 x 4 grid x 8 orientations = 128 dimensions

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
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the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 4.12 A dominant orientation estimate can be computed by creating a histogram of
all the gradient orientations (weighted by their magnitudes or after thresholding out small
gradients) and then finding the significant peaks in this distribution (Lowe 2004) c� 2004
Springer.

A better method is to estimate a dominant orientation at each detected keypoint. Once
the local orientation and scale of a keypoint have been estimated, a scaled and oriented patch
around the detected point can be extracted and used to form a feature descriptor (Figures 4.10
and 4.17).

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting function is used (Brown, Szeliski, and Winder 2005),
this average gradient is equivalent to a first-order steerable filter (Section 3.2.3), i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of Gaus-
sian filter (Freeman and Adelson 1991). In order to make this estimate more reliable, it is
usually preferable to use a larger aggregation window (Gaussian kernel size) than detection
window (Brown, Szeliski, and Winder 2005). The orientations of the square boxes shown in
Figure 4.10 were computed using this technique.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
an unreliable indicator of orientation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
of edge orientations weighted by both gradient magnitude and Gaussian distance to the cen-
ter, finds all peaks within 80% of the global maximum, and then computes a more accurate
orientation estimate using a three-bin parabolic fit (Figure 4.12).

Affine invariance

While scale and rotation invariance are highly desirable, for many applications such as wide
baseline stereo matching (Pritchett and Zisserman 1998; Schaffalitzky and Zisserman 2002)
or location recognition (Chum, Philbin, Sivic et al. 2007), full affine invariance is preferred.
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Figure 4.12 A dominant orientation estimate can be computed by creating a histogram of
all the gradient orientations (weighted by their magnitudes or after thresholding out small
gradients) and then finding the significant peaks in this distribution (Lowe 2004) c� 2004
Springer.

A better method is to estimate a dominant orientation at each detected keypoint. Once
the local orientation and scale of a keypoint have been estimated, a scaled and oriented patch
around the detected point can be extracted and used to form a feature descriptor (Figures 4.10
and 4.17).

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting function is used (Brown, Szeliski, and Winder 2005),
this average gradient is equivalent to a first-order steerable filter (Section 3.2.3), i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of Gaus-
sian filter (Freeman and Adelson 1991). In order to make this estimate more reliable, it is
usually preferable to use a larger aggregation window (Gaussian kernel size) than detection
window (Brown, Szeliski, and Winder 2005). The orientations of the square boxes shown in
Figure 4.10 were computed using this technique.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
an unreliable indicator of orientation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
of edge orientations weighted by both gradient magnitude and Gaussian distance to the cen-
ter, finds all peaks within 80% of the global maximum, and then computes a more accurate
orientation estimate using a three-bin parabolic fit (Figure 4.12).

Affine invariance

While scale and rotation invariance are highly desirable, for many applications such as wide
baseline stereo matching (Pritchett and Zisserman 1998; Schaffalitzky and Zisserman 2002)
or location recognition (Chum, Philbin, Sivic et al. 2007), full affine invariance is preferred.
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SIFT Recap

• Detector: fi nd points that are 
maxima in a DOG pyramid

• Compute local orientation from 
gradient histogram

• This establishes a local 
coordinate frame with scale/
orientation

• Descriptor: Build histograms 
over gradient orientations (8 
orientations, 4x4 grid)

• Normalise the final descriptor
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SIFT Matching
• Extract SIFT features from an image

43

Each image might generate 100’s or 1000’s of SIFT descriptors



SIFT Matching
• Goal: Find all correspondences between a pair of images

44

?

• Extract and match all SIFT descriptors from both images



SIFT Matching
• Each SIFT feature is represented by 128 numbers

• Feature matching becomes task of finding a nearby 128-d 
vector

• Nearest-neighbour matching:

45

NN(j) = argmin
i

|xi � xj |, i 6= j

• Linear time, but good approximation algorithms exist

• e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast 
Library for Approximate Nearest Neighbours) [Muja Lowe 
2009]



SIFT Matching
• Feature matching returns a set of noisy correspondences

• To get further, we will have to know something about the 
geometry of the images
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Shape Context
• Useful for matching with contours

47

A
[ Belongie Malik 2000 ]

Descriptor is 
log polar 
histogram



Choosing Features
• The best choice of features is usually application dependent
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Shape context? SIFT? Something else?
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Learning Descriptors
• Descriptor design as a learning (embedding) problem

49[ Winder Brown 2007 ]



Learning Descriptors
• Deep networks for descriptor learning
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Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

[ MatchNet
Han et al 2015 ]
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Abstract

We propose an attentive local feature descriptor suitable

for large-scale image retrieval, referred to as DELF (DEep

Local Feature). The new feature is based on convolutional

neural networks, which are trained only with image-level

annotations on a landmark image dataset. To identify

semantically useful local features for image retrieval, we

also propose an attention mechanism for keypoint selection,

which shares most network layers with the descriptor. This

framework can be used for image retrieval as a drop-in

replacement for other keypoint detectors and descriptors,

enabling more accurate feature matching and geometric

verification. Our system produces reliable confidence

scores to reject false positives—in particular, it is robust

against queries that have no correct match in the database.

To evaluate the proposed descriptor, we introduce a new

large-scale dataset, referred to as Google-Landmarks

dataset, which involves challenges in both database and

query such as background clutter, partial occlusion, multiple

landmarks, objects in variable scales, etc. We show that

DELF outperforms the state-of-the-art global and local

descriptors in the large-scale setting by significant margins.

Code and dataset can be found at the project webpage:

https://github.com/tensorflow/models/
tree/master/research/delf.

1. Introduction

Large-scale image retrieval is a fundamental task in com-
puter vision, since it is directly related to various practical
applications, e.g., object detection, visual place recognition,
and product recognition. The last decades have witnessed
tremendous advances in image retrieval systems—from hand-
crafted features and indexing algorithms [22, 33, 27, 16] to,
more recently, methods based on convolutional neural net-
works (CNNs) for global descriptor learning [2, 29, 11].

Despite the recent advances in CNN-based global descrip-
tors for image retrieval in small or medium-size datasets [27,
28], their performance may be hindered by a wide variety
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Figure 1: Overall architecture of our image retrieval system, us-
ing DEep Local Features (DELF) and attention-based keypoint
selection. On the left, we illustrate the pipeline for extraction and
selection of DELF. The portion highlighted in yellow represents an
attention mechanism that is trained to assign high scores to relevant
features and select the features with the highest scores. Feature
extraction and selection can be performed with a single forward
pass using our model. On the right, we illustrate our large-scale
feature-based retrieval pipeline. DELF for database images are
indexed offline. The index supports querying by retrieving nearest
neighbor (NN) features, which can be used to rank database images
based on geometrically verified matches.

of challenging conditions observed in large-scale datasets,
such as clutter, occlusion, and variations in viewpoint and
illumination. Global descriptors lack the ability to find patch-
level matches between images. As a result, it is difficult to
retrieve images based on partial matching in the presence of
occlusion and background clutter. In a recent trend, CNN-
based local features are proposed for patch-level matching
[12, 42, 40]. However, these techniques are not optimized
specifically for image retrieval since they lack the ability to
detect semantically meaningful features, and show limited
accuracy in practice.

Most existing image retrieval algorithms have been evalu-
ated in small to medium-size datasets with few query images,
i.e., only 55 in [27, 28] and 500 in [16], and the images in
the datasets have limited diversity in terms of landmark lo-
cations and types. Therefore, we believe that the image
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Project 1

• You can now complete Project 1 — Descriptors and 
Matching and Testing and Improving Feature 
Matching sections.
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Next Lecture
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• Planar Geometry, Camera Models, RANSAC


