
Filtering and Pyramids
CSE P576

Dr. Matthew Brown

Filtering and Pyramids
• Linear filtering (convolution, correlation)

- Blurring, sharpening, edge detection

• Gaussian and Laplacian Pyramids
- Multi-scale representations

2

Linear Operators
• How are photo filters implemented?

3

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

original image

blur sharpen edge filter

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Non-Linear Operators
• How are photo filters implemented?

4

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

original image

medianedge preserve
smooth

canny edges

Correlation Example

5

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

.⇤

element wise
(dot) product

=

92

0.1 ⇤ 65 + 0.1 ⇤ 98 + 0.1 ⇤ 123+
0.1 ⇤ 65 + 0.2 ⇤ 96 + 0.1 ⇤ 115+
0.1 ⇤ 63 + 0.1 ⇤ 91 + 0.1 ⇤ 107

=

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

Correlation Example

6

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

• With colour images, perform the dot products over each band

Correlation

7

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45 60 98 127 132 133 137 133

46 65 98 123 126 128 131 133 69 95 116 125 129 132

47 65 96 115 119 123 135 137 0.1 0.1 0.1 68 92 110 120 126 132

47 63 91 107 113 122 138 134 * 0.1 0.2 0.1 = 66 86 104 114 124 132

50 59 80 97 110 123 133 134 0.1 0.1 0.1 62 78 94 108 120 129

49 53 68 83 97 113 128 133 57 69 83 98 112 124

50 50 58 70 84 102 116 126 53 60 71 85 100 114

50 50 52 58 69 86 101 120

f (x,y) h (x,y) g (x,y)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ⇤ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel
function, h, convolved with an impulse signal, �(i, j) (an image that is 0 everywhere except
at the origin) reproduces itself, h ⇤ � = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i�k, j� l) multiplied by the input pixel values f(k, l). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

h � (f0 + f1) = h � f0 + h � f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) , (h � g)(i, j) = (h � f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (� stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) =
R

f(x� u)h(u)du.

I(x, y) k(x, y) Icr(x, y)

2.1

Correlation Example
• Centre-surround filter

8

...

...

...

...=*

* =

Correlation Example
• Edge effects

9

* =

• To maintain the image size, we can pad the input by adding
boundary pixels

• In this example the input has been zero padded

Padding
• What happens to pixels that overlap the boundary?

10

3.2 Linear filtering 115

zero wrap clamp mirror

blurred zero normalized zero blurred clamp blurred mirror

Figure 3.13 Border padding (top row) and the results of blurring the padded image (bottom
row). The normalized zero image is the result of dividing (normalizing) the blurred zero-
padded RGBA image by its corresponding soft alpha value.

• mirror: reflect pixels across the image edge;

• extend: extend the signal by subtracting the mirrored version of the signal from the
edge pixel value.

In the computer graphics literature (Akenine-Möller and Haines 2002, p. 124), these mech-
anisms are known as the wrapping mode (OpenGL) or texture addressing mode (Direct3D).
The formulas for each of these modes are left to the reader (Exercise 3.8).

Figure 3.13 shows the effects of padding an image with each of the above mechanisms and
then blurring the resulting padded image. As you can see, zero padding darkens the edges,
clamp (replication) padding propagates border values inward, mirror (reflection) padding pre-
serves colors near the borders. Extension padding (not shown) keeps the border pixels fixed
(during blur).

An alternative to padding is to blur the zero-padded RGBA image and to then divide the
resulting image by its alpha value to remove the darkening effect. The results can be quite
good, as seen in the normalized zero image in Figure 3.13.

3.2.1 Separable filtering

The process of performing a convolution requires K2 (multiply-add) operations per pixel,
where K is the size (width or height) of the convolution kernel, e.g., the box filter in Fig-

“zero” and “clamp” (also called zero-order
hold) are common in vision applications

Correlation and Convolution
• Correlation

11

I(x, y) corr k(x, y) =

Z

t

Z

s
I(x+ s, y + t)k(s, t) ds dt

• Convolution

I(x, y) ⇤ k(x, y) =

Z

t

Z

s
I(x� s, y � t)k(s, t) ds dt

2.2

For (180º rotation) symmetric kernels, correlation == convolution

Point Spread Function

12

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3
4 5 6
7 8 9

0 0 0 0 0 0 0 0
0 9 8 7 0 0 0 0
0 6 5 4 0 0 0 0
0 3 2 1 0 0 0 0
0 0 0 0 9 8 7 0
0 0 0 0 6 5 4 0
0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0

⇤ =

Point Spread Function

13

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3
4 5 6
7 8 9

0 0 0 0 0 0 0 0
0 9 8 7 0 0 0 0
0 6 5 4 0 0 0 0
0 3 2 1 0 0 0 0
0 0 0 0 9 8 7 0
0 0 0 0 6 5 4 0
0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0

⇤ =

• The point spread function is the correlation kernel rotated by
180º (= the convolution kernel)

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

Gaussian Blur

14

Gaussian Blur
• Gaussian kernel

11

1D 2D

12.2

Gaussian Blur
• Gaussian kernel

11

1D 2D

12.2

1D 2D

⇤ =

• Gaussian kernels are often used for smoothing

Gaussian Blur
• 2D Gaussian filter is a product of row and column filters

15

=

⇤

Edge Filtering
• Gradients can be computed using a finite difference

approximation to the derivative, e.g.,

16

Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

gx gy

gx = Ix+1 � Ix
<latexit sha1_base64="5CuPogie0QFQcGNYKKk0B4BoO90=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSIIYklE0I1QdKO7CvYBbQiT6bQdOnkwM5GGEH/FjQtF3Poh7vwbJ20W2nrgcg/n3MvcOV7EmVSW9W0sLa+srq2XNsqbW9s7u+befkuGsSC0SUIeio6HJeUsoE3FFKedSFDse5y2vfFN7rcfqZAsDB5UElHHx8OADRjBSkuuWRm6E3SF7tx0cmJnp3nPXLNq1awp0CKxC1KFAg3X/Or1QxL7NFCEYym7thUpJ8VCMcJpVu7FkkaYjPGQdjUNsE+lk06Pz9CRVvpoEApdgUJT9fdGin0pE9/Tkz5WIznv5eJ/XjdWg0snZUEUKxqQ2UODmCMVojwJ1GeCEsUTTTARTN+KyAgLTJTOq6xDsOe/vEhaZzXbqtn359X6dRFHCQ7gEI7Bhguowy00oAkEEniGV3gznowX4934mI0uGcVOBf7A+PwBQO6T3Q==</latexit><latexit sha1_base64="5CuPogie0QFQcGNYKKk0B4BoO90=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSIIYklE0I1QdKO7CvYBbQiT6bQdOnkwM5GGEH/FjQtF3Poh7vwbJ20W2nrgcg/n3MvcOV7EmVSW9W0sLa+srq2XNsqbW9s7u+befkuGsSC0SUIeio6HJeUsoE3FFKedSFDse5y2vfFN7rcfqZAsDB5UElHHx8OADRjBSkuuWRm6E3SF7tx0cmJnp3nPXLNq1awp0CKxC1KFAg3X/Or1QxL7NFCEYym7thUpJ8VCMcJpVu7FkkaYjPGQdjUNsE+lk06Pz9CRVvpoEApdgUJT9fdGin0pE9/Tkz5WIznv5eJ/XjdWg0snZUEUKxqQ2UODmCMVojwJ1GeCEsUTTTARTN+KyAgLTJTOq6xDsOe/vEhaZzXbqtn359X6dRFHCQ7gEI7Bhguowy00oAkEEniGV3gznowX4934mI0uGcVOBf7A+PwBQO6T3Q==</latexit><latexit sha1_base64="5CuPogie0QFQcGNYKKk0B4BoO90=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSIIYklE0I1QdKO7CvYBbQiT6bQdOnkwM5GGEH/FjQtF3Poh7vwbJ20W2nrgcg/n3MvcOV7EmVSW9W0sLa+srq2XNsqbW9s7u+befkuGsSC0SUIeio6HJeUsoE3FFKedSFDse5y2vfFN7rcfqZAsDB5UElHHx8OADRjBSkuuWRm6E3SF7tx0cmJnp3nPXLNq1awp0CKxC1KFAg3X/Or1QxL7NFCEYym7thUpJ8VCMcJpVu7FkkaYjPGQdjUNsE+lk06Pz9CRVvpoEApdgUJT9fdGin0pE9/Tkz5WIznv5eJ/XjdWg0snZUEUKxqQ2UODmCMVojwJ1GeCEsUTTTARTN+KyAgLTJTOq6xDsOe/vEhaZzXbqtn359X6dRFHCQ7gEI7Bhguowy00oAkEEniGV3gznowX4934mI0uGcVOBf7A+PwBQO6T3Q==</latexit><latexit sha1_base64="5CuPogie0QFQcGNYKKk0B4BoO90=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSIIYklE0I1QdKO7CvYBbQiT6bQdOnkwM5GGEH/FjQtF3Poh7vwbJ20W2nrgcg/n3MvcOV7EmVSW9W0sLa+srq2XNsqbW9s7u+befkuGsSC0SUIeio6HJeUsoE3FFKedSFDse5y2vfFN7rcfqZAsDB5UElHHx8OADRjBSkuuWRm6E3SF7tx0cmJnp3nPXLNq1awp0CKxC1KFAg3X/Or1QxL7NFCEYym7thUpJ8VCMcJpVu7FkkaYjPGQdjUNsE+lk06Pz9CRVvpoEApdgUJT9fdGin0pE9/Tkz5WIznv5eJ/XjdWg0snZUEUKxqQ2UODmCMVojwJ1GeCEsUTTTARTN+KyAgLTJTOq6xDsOe/vEhaZzXbqtn359X6dRFHCQ7gEI7Bhguowy00oAkEEniGV3gznowX4934mI0uGcVOBf7A+PwBQO6T3Q==</latexit>

Centre Surround Filter
• Useful for extracting features at a certain scale

17

=⇤

⊕

We can implement a sharpening
filter by adding a multiple of this high-

frequency band back to the image

Properties of Convolution

18

• Linear + associative, commutative

2.3

Separable Filtering
• 2D Gaussian blur by horizontal/vertical blur

19

horizontal

vertical horizontal

vertical

2.4

Separable Filtering
• Several useful filters can be applied as independent row and

column operations

20

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1
K2

1 1 · · · 1

1 1 · · · 1

...
... 1

...
1 1 · · · 1

1
16

1 2 1

2 4 2

1 2 1

1
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
8

�1 0 1

�2 0 2

�1 0 1

1
4

1 �2 1

�2 4 �2

1 �2 1

1
K

1 1 · · · 1
1
4 1 2 1

1
16 1 4 6 4 1

1
2 �1 0 1

1
2 1 �2 1

(a) box, K = 5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Project 1

• You are now ready to try the Convolution and Image
Filtering section in Project 1

• convolve_1d : Implement 1D convolution. Hint: pad the
input with zeros to avoid border cases.

• convolve_gaussian : you can transpose a kernel to flip
horizontal/vertical, but make sure it is a 2D numpy array - use
np.expand_dims if not

21

P1

Image Pyramids

22

Used in Graphics (Mip-map) and Vision
(for multi-scale processing)

÷2

÷2

÷2

Resizing Images
• Naive method: form new image by selecting every nth pixel

23What is wrong with this method?

Resizing Images
• Improved method: first blur the image (low pass filter)

24With the correct filter, no information is lost (Nyquist)

Aliasing Example
• Sampling every 5th pixel, with and without low pass filtering

25

No filtering Gaussian Blur � = 3.0

Resizing Images

• Note that selecting every 10th pixel ignores the intervening
information, whereas the low-pass filter (blur) smoothly
combines it

• If we shifted the original image 1 pixel to the right, the aliased
image would look completely different, but the the low pass
filtered image would look almost the same

26

every 10th pixel low pass filtered
(aliased) (correct sampling)

G1
blur

blur

G3

÷2

blur

G4

÷2

÷2

G2

Blur with a Gaussian
kernel, then select

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Often approximations
to the Gaussian kernel

are used, e.g.,
1

16

⇥
1 4 6 4 1

⇤

Gaussian Pyramid

G1

G2

G3

G4

blur

÷2

blur

÷2

blur

÷2

Blur with a Gaussian
kernel, then select

every 2nd pixel

Is(x, y) = I(x, y) ⇤ g�(x, y)

Often approximations
to the Gaussian kernel

are used, e.g.,
1

16

⇥
1 4 6 4 1

⇤

Gaussian Pyramid

Sampling with Pyramids

29

Find the level where the sample spacing is between 1 and 2
pixels, apply extra fraction of inter-octave blur as needed

÷2

÷2

÷2

G1

G2

G3

G4

L1

L2

L3

L4

⊖blur

÷2

⊖blur

÷2

⊖blur

÷2

L4

Laplacian Pyramid

G1

G3

G4

L1⊖blur

÷2

L2⊖blur

÷2

L3⊖blur

÷2

G2

L4

Laplacian Pyramid

G1

G2

G3

G4

L1

L2

L3

L4

⊕

⊕

⊕

↑2

↑2

↑2

G1

G2

G3

G4

L1

L2

L3

L4

⊕

⊕

⊕

↑2

↑2

↑2

34

Pyramid Blending

35

Pyramid Blending

I = ↵F + (1� ↵)B

⇤ ⇤+ =

36

37

=⇤ ⇤+ =

⇤ ⇤+ =

+

⇤ ⇤+ =

+

⇤ ⇤+ =

+

=
Pyramid Blending: blend lower frequency

bands over larger spatial ranges

38

Pyramid Blending

39

160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) c� 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then

[Burt Adelson 1983]

• Smooth low frequencies, whilst preserving high frequency detail

Pyramid Blending

40

3.5 Pyramids and wavelets 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) c� 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaged contributions.

3.5 Pyramids and wavelets 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) c� 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaged contributions.

3.5 Pyramids and wavelets 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) c� 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaged contributions.

41

42[Jim Kajiya, Andries van Dam]

43Alpha blend with sharp fall-off

44Alpha blend with gradual fall-off

45Pyramid Blend

Non-linear Filtering
• Example: Median filter

46

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

“shot” noise

gaussian blurred

median filtered

Morphology
• Non-linear binary image operations

47

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

original dilate erode open closemajority

Threshold function
in local structuring

element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Binary Operators
• More operators that apply to binary images

48

original image

dilate distance transform
connected

components

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

3.2 Linear filtering 113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41–3.45).

Next Lecture
• Feature Extraction and Matching

49

