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• Can a neural net define the loss function?

• Loss functions for Super-Resolution: L2, VGG, Adversarial

• Generative Adversarial Nets and Image Generation

• Conditional GANs, Image Translation, pix2pix



Super-Resolution: SRCNN
• Small network (3 layers) generates reasonable results

3[ SRCNN, Dong et al 2014 ]
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Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN extracts a set of feature maps. The
second layer maps these feature maps nonlinearly to high-resolution patch representations. The last layer combines
the predictions within a spatial neighbourhood to produce the final high-resolution image F (Y).

a kernel size c ⇥ f1 ⇥ f1. The output is composed of
n1 feature maps. B1 is an n1-dimensional vector, whose
each element is associated with a filter. We apply the
Rectified Linear Unit (ReLU, max(0, x)) [33] on the filter
responses4.

3.1.2 Non-linear mapping
The first layer extracts an n1-dimensional feature for
each patch. In the second operation, we map each of
these n1-dimensional vectors into an n2-dimensional
one. This is equivalent to applying n2 filters which have
a trivial spatial support 1⇥ 1. This interpretation is only
valid for 1⇥1 filters. But it is easy to generalize to larger
filters like 3 ⇥ 3 or 5 ⇥ 5. In that case, the non-linear
mapping is not on a patch of the input image; instead,
it is on a 3⇥ 3 or 5⇥ 5 “patch” of the feature map. The
operation of the second layer is:

F2(Y) = max (0,W2 ⇤ F1(Y) +B2) . (2)

Here W2 contains n2 filters of size n1⇥f2⇥f2, and B2 is
n2-dimensional. Each of the output n2-dimensional vec-
tors is conceptually a representation of a high-resolution
patch that will be used for reconstruction.

It is possible to add more convolutional layers to
increase the non-linearity. But this can increase the com-
plexity of the model (n2 ⇥ f2 ⇥ f2 ⇥ n2 parameters for
one layer), and thus demands more training time. We
will explore deeper structures by introducing additional
non-linear mapping layers in Section 4.3.3.

3.1.3 Reconstruction
In the traditional methods, the predicted overlapping
high-resolution patches are often averaged to produce
the final full image. The averaging can be considered
as a pre-defined filter on a set of feature maps (where
each position is the “flattened” vector form of a high-
resolution patch). Motivated by this, we define a convo-
lutional layer to produce the final high-resolution image:

F (Y) = W3 ⇤ F2(Y) +B3. (3)

4. The ReLU can be equivalently considered as a part of the second
operation (Non-linear mapping), and the first operation (Patch extrac-
tion and representation) becomes purely linear convolution.

Here W3 corresponds to c filters of a size n2 ⇥ f3 ⇥ f3,
and B3 is a c-dimensional vector.

If the representations of the high-resolution patches
are in the image domain (i.e.,we can simply reshape each
representation to form the patch), we expect that the
filters act like an averaging filter; if the representations
of the high-resolution patches are in some other domains
(e.g.,coefficients in terms of some bases), we expect that
W3 behaves like first projecting the coefficients onto the
image domain and then averaging. In either way, W3 is
a set of linear filters.

Interestingly, although the above three operations are
motivated by different intuitions, they all lead to the
same form as a convolutional layer. We put all three
operations together and form a convolutional neural
network (Figure 2). In this model, all the filtering weights
and biases are to be optimized. Despite the succinctness
of the overall structure, our SRCNN model is carefully
developed by drawing extensive experience resulted
from significant progresses in super-resolution [49], [50].
We detail the relationship in the next section.

3.2 Relationship to Sparse-Coding-Based Methods
We show that the sparse-coding-based SR methods [49],
[50] can be viewed as a convolutional neural network.
Figure 3 shows an illustration.

In the sparse-coding-based methods, let us consider
that an f1 ⇥ f1 low-resolution patch is extracted from
the input image. Then the sparse coding solver, like
Feature-Sign [29], will first project the patch onto a (low-
resolution) dictionary. If the dictionary size is n1, this
is equivalent to applying n1 linear filters (f1 ⇥ f1) on
the input image (the mean subtraction is also a linear
operation so can be absorbed). This is illustrated as the
left part of Figure 3.

The sparse coding solver will then iteratively process
the n1 coefficients. The outputs of this solver are n2

coefficients, and usually n2 = n1 in the case of sparse
coding. These n2 coefficients are the representation of
the high-resolution patch. In this sense, the sparse coding

Train using 
L2 loss vs 

ground truthrelu

64 32

9x9 1x1 5x5



Super-Resolution: SRResNet

4

Trained with L2 loss, state-
of-the-art PSNR in 2017

10.1

• Deeper networks generate better results, e.g., SRResNet

[ Ledig et al 2017 ]



SRResNet: L2 Loss
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bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

[ Ledig et al 2017 ]

A state of the art super-res network trained with L2 loss is 
good at sharpening edges, but results lack realistic texture 
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adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
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perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

More realistic, but L2 
loss is worse
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perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

More realistic, but L2 
loss is worse



Perceptual Metrics 
• L2 loss does not match human perception in general
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ReferenceHuman 
preferred

L2 
preferred

[ Zhang et al 2018 ]



Texture Synthesis
• Which are the real radishes?
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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[ Gatys et al 2015 ]



Texture Synthesis
• Which are the real rocks?
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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Figure 1: Synthesis method. Texture analysis (left). The original texture is passed through the CNN
and the Gram matrices Gl on the feature responses of a number of layers are computed. Texture
synthesis (right). A white noise image ~̂x is passed through the CNN and a loss function El is
computed on every layer included in the texture model. The total loss function L is a weighted sum
of the contributions El from each layer. Using gradient descent on the total loss with respect to the
pixel values, a new image is found that produces the same Gram matrices Ĝl as the original texture.

spatial extent of the image. In the model a texture is uniquely defined by the outcome of those
measurements and every image that produces the same outcome should be perceived as the same
texture. Therefore new samples of a texture can be generated by finding an image that produces the
same measurement outcomes as the original texture. Conceptually this idea was first proposed by
Julesz [13] who conjectured that a visual texture can be uniquely described by the Nth-order joint
histograms of its pixels. Later on, texture models were inspired by the linear response properties
of the mammalian early visual system, which resemble those of oriented band-pass (Gabor) filters
[10, 21]. These texture models are based on statistical measurements taken on the filter responses
rather than directly on the image pixels. So far the best parametric model for texture synthesis
is probably that proposed by Portilla and Simoncelli [21], which is based on a set of carefully
handcrafted summary statistics computed on the responses of a linear filter bank called Steerable
Pyramid [24]. However, although their model shows very good performance in synthesising a wide
range of textures, it still fails to capture the full scope of natural textures.

In this work, we propose a new parametric texture model to tackle this problem (Fig. 1). Instead
of describing textures on the basis of a model for the early visual system [21, 10], we use a con-
volutional neural network – a functional model for the entire ventral stream – as the foundation for
our texture model. We combine the conceptual framework of spatial summary statistics on feature
responses with the powerful feature space of a convolutional neural network that has been trained on
object recognition. In that way we obtain a texture model that is parameterised by spatially invariant
representations built on the hierarchical processing architecture of the convolutional neural network.
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Figure 1: Synthesis method. Texture analysis (left). The original texture is passed through the CNN
and the Gram matrices Gl on the feature responses of a number of layers are computed. Texture
synthesis (right). A white noise image ~̂x is passed through the CNN and a loss function El is
computed on every layer included in the texture model. The total loss function L is a weighted sum
of the contributions El from each layer. Using gradient descent on the total loss with respect to the
pixel values, a new image is found that produces the same Gram matrices Ĝl as the original texture.

spatial extent of the image. In the model a texture is uniquely defined by the outcome of those
measurements and every image that produces the same outcome should be perceived as the same
texture. Therefore new samples of a texture can be generated by finding an image that produces the
same measurement outcomes as the original texture. Conceptually this idea was first proposed by
Julesz [13] who conjectured that a visual texture can be uniquely described by the Nth-order joint
histograms of its pixels. Later on, texture models were inspired by the linear response properties
of the mammalian early visual system, which resemble those of oriented band-pass (Gabor) filters
[10, 21]. These texture models are based on statistical measurements taken on the filter responses
rather than directly on the image pixels. So far the best parametric model for texture synthesis
is probably that proposed by Portilla and Simoncelli [21], which is based on a set of carefully
handcrafted summary statistics computed on the responses of a linear filter bank called Steerable
Pyramid [24]. However, although their model shows very good performance in synthesising a wide
range of textures, it still fails to capture the full scope of natural textures.

In this work, we propose a new parametric texture model to tackle this problem (Fig. 1). Instead
of describing textures on the basis of a model for the early visual system [21, 10], we use a con-
volutional neural network – a functional model for the entire ventral stream – as the foundation for
our texture model. We combine the conceptual framework of spatial summary statistics on feature
responses with the powerful feature space of a convolutional neural network that has been trained on
object recognition. In that way we obtain a texture model that is parameterised by spatially invariant
representations built on the hierarchical processing architecture of the convolutional neural network.
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Texture Synthesis

• Portilla Simoncelli 1999 texture model also used correlation 
of filter responses (though shallow features / hand tuned) 12
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
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image to give a better intuition about how the texture model represents image information.
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Style Transfer

Re-render an image given the “style” of an artist [ Gatys et al 2015 ]



Content and Style Losses
E(content) =
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Figure 1: Synthesis method. Texture analysis (left). The original texture is passed through the CNN
and the Gram matrices Gl on the feature responses of a number of layers are computed. Texture
synthesis (right). A white noise image ~̂x is passed through the CNN and a loss function El is
computed on every layer included in the texture model. The total loss function L is a weighted sum
of the contributions El from each layer. Using gradient descent on the total loss with respect to the
pixel values, a new image is found that produces the same Gram matrices Ĝl as the original texture.

spatial extent of the image. In the model a texture is uniquely defined by the outcome of those
measurements and every image that produces the same outcome should be perceived as the same
texture. Therefore new samples of a texture can be generated by finding an image that produces the
same measurement outcomes as the original texture. Conceptually this idea was first proposed by
Julesz [13] who conjectured that a visual texture can be uniquely described by the Nth-order joint
histograms of its pixels. Later on, texture models were inspired by the linear response properties
of the mammalian early visual system, which resemble those of oriented band-pass (Gabor) filters
[10, 21]. These texture models are based on statistical measurements taken on the filter responses
rather than directly on the image pixels. So far the best parametric model for texture synthesis
is probably that proposed by Portilla and Simoncelli [21], which is based on a set of carefully
handcrafted summary statistics computed on the responses of a linear filter bank called Steerable
Pyramid [24]. However, although their model shows very good performance in synthesising a wide
range of textures, it still fails to capture the full scope of natural textures.

In this work, we propose a new parametric texture model to tackle this problem (Fig. 1). Instead
of describing textures on the basis of a model for the early visual system [21, 10], we use a con-
volutional neural network – a functional model for the entire ventral stream – as the foundation for
our texture model. We combine the conceptual framework of spatial summary statistics on feature
responses with the powerful feature space of a convolutional neural network that has been trained on
object recognition. In that way we obtain a texture model that is parameterised by spatially invariant
representations built on the hierarchical processing architecture of the convolutional neural network.

2

E(style) =

Match content Match style [ Gatys et al 2015 ]



Feedforward Style Transfer

16[ Johnson et al. 2016 ]

Match neural 
network features 

(content and style)

12-layer, 
residual conn., 

fully conv



Feedforward Style Transfer
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Content Gatys Johnson Content Gatys Johnson

Comparable results to with much lower computational costs 
(single feedforward pass vs 1000s of backprop iterations)



Super-Resolution
• Small networks are generally good at sharpening edges and 

can work well for small factor (e.g., 2) super-resolution

• Better results can be achieved by using deeper networks, + 
more sophisticated loss functions (perceptual loss, GANs)
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Perceptual Losses for Real-Time Style Transfer and Super-Resolution 13

Ground Truth

This image
Set5 mean

Bicubic

31.78 / 0.8577
28.43 / 0.8114

Ours (`pixel)
31.47 / 0.8573
28.40 / 0.8205

SRCNN [11]
32.99 / 0.8784
30.48 / 0.8628

Ours (`feat)
29.24 / 0.7841
27.09 / 0.7680

Ground Truth

This Image
Set14 mean

BSD100 mean

Bicubic

21.69 / 0.5840
25.99 / 0.7301
25.96 / 0.682

Ours (`pixel)
21.66 / 0.5881
25.75 / 0.6994
25.91 / 0.6680

SRCNN [11]
22.53 / 0.6524
27.49 / 0.7503
26.90 / 0.7101

Ours (`feat)
21.04 / 0.6116
24.99 / 0.6731
24.95 / 63.17

Fig. 8. Results for ⇥4 super-resolution on images from Set5 (top) and Set14 (bottom).
We report PSNR / SSIM for each example and the mean for each dataset. More results
are shown in the supplementary material.

a batch size of 4 for 200k iterations using Adam [51] with a learning rate of
1⇥10�3 without weight decay or dropout. As a post-processing step, we perform
histogram matching between our network output and the low-resolution input.

Baselines. As a baseline model we use SRCNN [1] for its state-of-the-art per-
formance. SRCNN is a three-layer convolutional network trained to minimize
per-pixel loss on 33⇥ 33 patches from the ILSVRC 2013 detection dataset. SR-
CNN is not trained for ⇥8 super-resolution, so we can only evaluate it on ⇥4.

SRCNN is trained for more than 109 iterations, which is not computation-
ally feasible for our models. To account for di↵erences between SRCNN and our
model in data, training, and architecture, we train image transformation net-
works for ⇥4 and ⇥8 super-resolution using `pixel; these networks use identical
data, architecture, and training as the networks trained to minimize `feat.

Evaluation. We evaluate all models on the standard Set5 [60], Set14 [61], and
BSD100 [41] datasets. We report PSNR and SSIM [54], computing both only on
the Y channel after converting to the YCbCr colorspace, following [1,39].

Results. We show results for ⇥4 super-resolution in Figure 8. Compared to the
other methods, our model trained for feature reconstruction does a very good
job at reconstructing sharp edges and fine details, such as the eyelashes in the
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a batch size of 4 for 200k iterations using Adam [51] with a learning rate of
1⇥10�3 without weight decay or dropout. As a post-processing step, we perform
histogram matching between our network output and the low-resolution input.

Baselines. As a baseline model we use SRCNN [1] for its state-of-the-art per-
formance. SRCNN is a three-layer convolutional network trained to minimize
per-pixel loss on 33⇥ 33 patches from the ILSVRC 2013 detection dataset. SR-
CNN is not trained for ⇥8 super-resolution, so we can only evaluate it on ⇥4.

SRCNN is trained for more than 109 iterations, which is not computation-
ally feasible for our models. To account for di↵erences between SRCNN and our
model in data, training, and architecture, we train image transformation net-
works for ⇥4 and ⇥8 super-resolution using `pixel; these networks use identical
data, architecture, and training as the networks trained to minimize `feat.

Evaluation. We evaluate all models on the standard Set5 [60], Set14 [61], and
BSD100 [41] datasets. We report PSNR and SSIM [54], computing both only on
the Y channel after converting to the YCbCr colorspace, following [1,39].

Results. We show results for ⇥4 super-resolution in Figure 8. Compared to the
other methods, our model trained for feature reconstruction does a very good
job at reconstructing sharp edges and fine details, such as the eyelashes in the

Original Bicubic SRCNN Johnson et al*
[ Johnson et al. 2016 ]*12-layer, residual conn., fully conv, VGG loss 



Super-Resolution with VGG loss
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Low-res 
input

High-res
target

Match neural 
net features

(content loss)

Note: style loss not used for super-res

[ Johnson et al. 2016 ]



Super-Resolution with VGG loss
• Results
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Ground 
Truth Bicubic SRCNN

Johnson et al.
VGG loss 

[ Johnson et al. 2016 ]



Super-Resolution with VGG loss
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SRCNN Johnson
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Super-Resolution with VGG loss

[ Johnson et al. 2016 ]



SRGAN
• Can we train a neural network to define the loss?

23[ Ledig et al. 2017 ]
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bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR



SRGAN

25
Discriminator tries to detect real vs super-resolved images

Generator performs super-resolution, tries to fool discriminator
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Justin Johnson December 2, 2019

Generative Adversarial Networks

Lecture 20 - 44

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.
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Generative Adversarial Networks

Lecture 20 - 45

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).

Sample C ∼ #(C) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!
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Generative Adversarial Networks

Lecture 20 - 46

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).

Sample C ∼ #(C) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 

z from pz

z

Generator 

Network

G

Generated 

Sample

Train Generator Network G to convert 

z into fake data x sampled from pG
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Generative Adversarial Networks

Lecture 20 - 48

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).

Sample C ∼ #(C) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 

z from pz

z

Generator 

Network

G

Generated 

Sample

D

Discriminator 

Network

Fake

Real Sample

Real

Train  Discriminator Network D to 

classify data as real or fake (1/0)

Train Generator Network G to convert 

z into fake data x sampled from pG

by ”fooling” the discriminator D

Jointly train G and 
D. Hopefully pG
converges to pdata!
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Generative Adversarial Networks: Training Objective

Lecture 20 - 49

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
]
max
`

;A~abcdc logF $ + ;<~a(<) log 1 − F e C

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Lecture 20 - 51

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
f
max
g

;A~abcdc logg $ + ;h~a(h) log 1 − g f h

Discriminator wants 
D(x) = 1 for real data

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Lecture 20 - 52

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
f
max
g

;A~abcdc logg $ + ;h~a(h) log 1 − g f h

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Lecture 20 - 53

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
f
max
g

;A~abcdc logg $ + ;h~a(h) log 1 − g f h

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data

Generator wants 
D(x) = 1 for fake dataSample 

z from pz
z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Lecture 20 - 55

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
f
max
g

;A~abcdc logg $ + ;h~a(h) log 1 − g f h

Jointly train generator G and discriminator D with a minimax game

= minf max
g

i(f,g)

Train G and D using alternating gradient updates
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Generative Adversarial Networks: Training Objective

Lecture 20 - 57

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
f
max
g

;A~abcdc logg $ + ;h~a(h) log 1 − g f h

Jointly train generator G and discriminator D with a minimax game

= minf max
g

i(f,g) For t in 1, … T:

1. (Update D) g = g+ jg ki
kg

2. (Update G) f = f − jf kikf

Train G and D using alternating gradient updates

We are not minimizing any overall 
loss! No training curves to look at!



SRGAN
• Generator performs superres, discriminator attempts to 

detect real images vs super-resolved low res images

36

D

real
fake

true label

x

D out

G

D

real
real

✔

2 Johnson et al

Style Content Gatys et al [10] Ours

Ground Truth Bicubic SRCNN [11] Perceptual loss

Fig. 1. Example results for style transfer (top) and ⇥4 super-resolution (bottom). For
style transfer, we achieve similar results as Gatys et al [10] but are three orders of
magnitude faster. For super-resolution our method trained with a perceptual loss is
able to better reconstruct fine details compared to methods trained with per-pixel loss.

identical images o↵set from each other by one pixel; despite their perceptual
similarity they would be very di↵erent as measured by per-pixel losses.

In parallel, recent work has shown that high-quality images can be generated
using perceptual loss functions based not on di↵erences between pixels but in-
stead on di↵erences between high-level image feature representations extracted
from pretrained convolutional neural networks. Images are generated by mini-
mizing a loss function. This strategy has been applied to feature inversion [6] by
Mahendran et al, to feature visualization by Simonyan et al [7] and Yosinski et
al [8], and to texture synthesis and style transfer by Gatys et al [9,10]. These
approaches produce high-quality images, but are slow since inference requires
solving an optimization problem.

In this paper we combine the benefits of these two approaches. We train feed-
forward transformation networks for image transformation tasks, but rather than
using per-pixel loss functions depending only on low-level pixel information, we
train our networks using perceptual loss functions that depend on high-level
features from a pretrained loss network. During training, perceptual losses mea-
sure image similarities more robustly than per-pixel losses, and at test-time the
transformation networks run in real-time.

We experiment on two tasks: style transfer and single-image super-resolution.
Both are inherently ill-posed; for style transfer there is no single correct output,
and for super-resolution there are many high-resolution images that could have
generated the same low-resolution input. Success in either task requires semantic
reasoning about the input image. For style transfer the output must be semanti-
cally similar to the input despite drastic changes in color and texture; for super-
resolution fine details must be inferred from visually ambiguous low-resolution
inputs. In principle a high-capacity neural network trained for either task could
implicitly learn to reason about the relevant semantics; however in practice we
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Generative Adversarial Networks: Results

Lecture 20 - 89

Nearest neighbor from training set

Generated samples

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Original GAN paper, image generation, driven by noise input
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Generative Adversarial Networks: DC-GAN

Lecture 20 - 90

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator
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Generative Adversarial Networks: DC-GAN

Lecture 20 - 91

Radford et al, 
ICLR 2016

Samples 
from the 
model 
look 
much 
better!
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Generative Adversarial Networks: Interpolation

Lecture 20 - 92

Radford et al, 
ICLR 2016

Interpolating 
between 
points in 
latent z 
space
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Generative Adversarial Networks: Vector Math

Lecture 20 - 94
Radford et al, ICLR 2016
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vectors, do 
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Generative Adversarial Networks: Vector Math

Lecture 20 - 95

Radford et al, ICLR 2016
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Average Z 
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Generative Adversarial Networks: Vector Math

Lecture 20 - 96

Radford et al, ICLR 2016
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Generative Adversarial Networks: Vector Math

Lecture 20 - 97

Radford et al, ICLR 2016

Man with 
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Man w/o 
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Samples 
from the 
model

Average Z 
vectors, do 
arithmetic



[ Odena 2019 ]

BigGAN



46[ StyleGAN, Karras et al 2019 ]
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GAN Questions

49https://distill.pub/2019/gan-open-problems/ 

https://distill.pub/2019/gan-open-problems/


Image Translation
• Many problems in vision/graphics can be viewed as image 

translation problems

50[ pix2pix, Isola et al. 2018 ]

Can we build a general machine to translate images?



Image Translation
• e.g., translation from grey to color should be indistinguishable 

from real

51
This is a (conditional) Generative Adversarial Network
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Fig. 5. Example results from our ImageNet test set. Our classification loss with re-
balancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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additional supervisory 
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frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range
of results.
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pix2pix: Segmentation→Image
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pix2pix: Edges→Image

Model trained using edge detection, but works for hand drawings:
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https://affinelayer.com/pixsrv/ 

https://affinelayer.com/pixsrv/
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