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Deep Learning in 3D
• We’ll focus on predicting 3D from one or more image

• Supervision: depth, mesh, silhouettes, view supervision

• Representations: Depth, Points, Meshes, Voxels, SDFs

• Neural Scene Representation and Rendering
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3D Representation

3

ɸ(X)

• Many ways to represent objects in 3D



Single-View Depth Estimation

4

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 ൌ 𝑛௫, 𝑛௬, 𝑛௭ , 𝒏 ൌ 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

U-Net with skip 
connections

Loss, 
e.g., L2Direct supervision 

via Kinect RGB+D



2-view Stereo
• Form HxWxD=disparity volume and use 3D convolution

5[ Kendall et al. 2017 ]

Extract features 
at each pixel 

using 2D CNN

Form volume by 
sliding features 
from 2nd image 
at D disparities

Perform 3D 
convolution on 
feature volume

Treat output 
as disparity 
cost volume 
and perform 
soft argmax

https://www.youtube.com/watch?v=VtAzDS1NLmo 

https://www.youtube.com/watch?v=VtAzDS1NLmo


Multi-view Stereo

6[ DeepMVS, Huang et al. 2018 ]

Compare patches in ref image
to plane sweep volumes from 

other images

Perform intra and inter-volume 
aggregation of features



[ Huang et al. 2018 ]

DeepMVS: Results

Image Ground
Truth

Colmap
Filtered

Colmap
all

DeepMVS
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3D Shape Representations: Point Cloud

Lecture 17 - 32

• Represent shape as a set of P points in 3D space
• (+) Can represent fine structures without huge numbers of points
• (  ) Requires new architecture, losses, etc
• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh 

for rendering or other applications requires post-processing

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Processing Pointcloud Inputs: PointNet

Lecture 17 - 33

Input pointcloud:
P x 3

Point features:
P x D

Run MLP on
each point

Max-Pool

Pooled vector:
D

Fully 
Connected

Class score:
C

Want to process 
pointclouds as sets: 

order should not matter

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017
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Generating Pointcloud Outputs

Lecture 17 - 34

Input Image:
3 x H x W

2D 
CNN

Image 
Features:

C x H’ x W’

2D
CNN

Fully connected 
branch

Convolutional 
branch

Points: 
P1 x 3

Points: 
(P2x3) x H’ x W’ Pointcloud: 

(P1 + H’W’P2) x 3

Fan et al, “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 36

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 37

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 39

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017

ICP-like distance function
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3D Shape Representations: Triangle Mesh

Lecture 17 - 42

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
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3D Shape Representations: Triangle Mesh

Lecture 17 - 43

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail

Dolphin image is in the public domain
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3D Shape Representations: Triangle Mesh

Lecture 17 - 44

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail
(+) Can attach data on verts and 
interpolate over the whole surface: RGB 
colors, texture coordinates, normal 
vectors, etc.

UV mapping figure is licensed 
under CC BY-SA 3.0. Figure
slightly reorganized.
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Predicting Meshes: Pixel2Mesh

Lecture 17 - 47

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function

Supervised with ground truth meshes
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Predicting Triangle Meshes: Iterative Refinement

Lecture 17 - 48

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #1: Iterative mesh refinement
Start from initial ellipsoid mesh
Network predicts offsets for each vertex
Repeat.Fixed mesh

structure
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Predicting Triangle Meshes: Graph Convolution

Lecture 17 - 49

Input: Graph with a feature 
vector at each vertex

Output: New feature 
vector for each vertex

Vertex vi has feature fi

New feature f’i for vertex 
vi depends on feature of 
neighboring vertices N(i)

f’i = 

Use same weights W0 
and W1 to compute 
all outputs
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Predicting Triangle Meshes: Graph Convolution

Lecture 17 - 50

Each of these blocks consists of a 
stack of graph convolution layers 
operating on edges of the mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
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Predicting Triangle Meshes: Vertex-Aligned Features

Lecture 17 - 52

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #2: Aligned vertex features
For each vertex of the mesh:
- Use camera information to 

project onto image plane
- Use bilinear interpolation to 

sample a CNN feature

2D 
CNN

Input Image

Image 
Features



22

Justin Johnson November 13, 2019

Predicting Meshes: Loss Function

Lecture 17 - 55
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Idea: Convert meshes to pointclouds, then compute loss
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Predicting Meshes: Loss Function

Lecture 17 - 59

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points 
from the surface 
of the predicted 
mesh (online!)

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
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Predicting Meshes: Pixel2Mesh

Lecture 17 - 61

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function

Supervised with ground truth meshes



• Can we learn without ground truth meshes?

25[ Kanazawa et al. 2018 ]

Category Specific Mesh Reconstruction

Given an image, infer mesh, camera, texture



26

Data = Caltech-UCSD birds CUB-200-2011, 
6000 images of 200 bird species, + 

segmentation, 14 semantic keypoints, remove 
300 images where num visible keypoints <= 6



• Train a model to predict object mesh (deformation of mean 
category shape) + camera pose

27

• Use semantic keypoints and object masks to learn shape 
(texture not used to learn shape in this implementation)

[ Kanazawa et al. 2018 ]

Category Specific Mesh Reconstruction



Mesh Parametrization
• Fixed spherical mesh (subdivided icosahedron) 642 vertices V 

1280 faces

• Instances are deformations ΔV of a mean class shape V

• Texture is modelled as RGB colour in spherical coordinates

28



Keypoints and Projection

• Semantic keypoint positions 
are modelled as weighted 
vertex positions

• Matrix A is learned per-class, 
can be viewed as per-vertex 
probabilities, with keypoints as 
the expected value

• Projection 𝛑 is modelled by a 
camera with translation t, 
rotation q (quaternion) and 
scale s

29

= set of keypoint positions



Keypoint Projection Loss
• Ensure that keypoints (parametrized as weighted vertex 

positions) map to the known positions xi. Note: weightings A 
are per class, vertices V per instance 

30



Mask Projection Loss
• Ensure that the mesh maps to the known silhouette. Note: 

gradient depends on rendering the mesh

31

S = silhouette, R(.) mesh rendering



Gradient of Mesh Render

32

Extend gradient for each pixel inside/
outside triangles with linear ramp

[ Neural 3D Mesh Renderer, Kato et al. CVPR 2018 ]



Texture Representation

33

• Texture is parametrized as coordinates (flow) of the input 
image I(u,v)

• → each point on the reference sphere is given a coordinate in 
the input image

• Latent representation is upconvolved to generate flow I(u,v)

• Loss is Zhang et al. perceptual loss [1] of projected texture

• Note: texture loss is not used to learn shape!

[1] The unreasonable effectiveness of deep networks as a perceptual metric. 
R. Zhang et al. CVPR 2018
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ResNet18 (ImageNet)
Conv ↓2 space/channel

Vectorize → 4096D
2 x fully conn →  200D

5 upconv layers, tanh 
activation to constrain 

to [-1,1] coords

Linear layers
Crop to BBox
Resize 256 px

Jitter scale/trans

(not used to learn shape!)



SFM Initialization
• In principle, camera 𝛑, mean shape V, instance shape ΔV, 

keypoint weightings A could be learned from supervised 
keypoint and silhouette losses

• In practice, the authors initialize cameras 𝛑 and mean shape V 
via SFM

• Note this involves bundle adjustment / optimization over 
different birds, so results in fitting an “average” bird model

• The mesh is initialized as the convex hull of keypoint positions, 
and camera solutions 𝛑_hat are recorded

35



Results

36



Results

37



Deformation Modes
• Mean and first 3 PCA components of bird shapes

38
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3D Shape Prediction: Mesh R-CNN

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019

Detect objects and 
extract silhouettes Estimate 3D mesh
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3D Datasets: Object-Centric

Lecture 17 - 88

ShapeNet

~50 categories, ~50k 3D CAD models

Standard split has 13 categories, ~44k 
models, 25 rendered images per model
Many papers show results here

(-) Synthetic, isolated objects; no context

(-) Lots of chairs, cars, airplanes
Chang et al, “ShapeNet: An Information-Rich 3D Model Repository”, arXiv 2015
Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016

Pix3D

9 categories, 219 3D models of IKEA furniture 
aligned to ~17k real images

Some papers train on ShapeNet and show 
qualitative results here, but use ground-truth 
segmentation masks

(+) Real images! Context!

(-) Small, partial annotations – only 1 obj/image

Sun et al, “Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling”, CVPR 2018

uses 3D mesh 
models from IKEA
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Mesh R-CNN: Task
Input: Single RGB image

Output:
A set of detected objects
For each object:
- Bounding box
- Category label
- Instance segmentation
- 3D triangle mesh

Mask R-CNN

Mesh head
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Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good 
results, but the topology (verts, faces, 
genus, connected components) fixed 

by the initial mesh

Our approach: Use voxel 
predictions to create 

initial mesh prediction!
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Mesh R-CNN Pipeline

Lecture 17 - 96

Input image 2D object recognition

3D object voxels3D object meshes
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Mesh R-CNN: ShapeNet Results

Lecture 17 - 97
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Mesh R-CNN: Pix3D Results

Lecture 17 - 101

Box & Mask Predictions Mesh Predictions

Amodal completion: predict 
occluded parts of objects
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3D Shape Representations: Voxels

Lecture 17 - 17

• Represent a shape with a V x V x V grid of occupancies
• Just like segmentation masks in Mask R-CNN, but in 3D!
• (+) Conceptually simple: just a 3D grid!
• (-) Need high spatial resolution to capture fine structures
• (-) Scaling to high resolutions is nontrivial!

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
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Processing Voxel Inputs: 3D Convolution

Lecture 17 - 18

Class 
Scores

FC 
Layer

Input:
1 x 30 x 30 x 30

6x6x6 conv
48x13x13x13

5x5x5 conv
160x5x5x5

4x4x4 conv
512x2x2x2

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015
Train with classification loss

(for classification of a voxel grid)
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Generating Voxel Shapes: 3D Convolution

Lecture 17 - 19

Input image:
3 x 112 x 112

2D 
CNN

2D Features:
C x H x W

3D Features:
C’ x D’ x H’ x W’

3D CNN

Voxels:
1 x V x V x V

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
Train with per-voxel cross-entropy loss
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Voxel Problems: Memory Usage

Lecture 17 - 21

0.1

1

10

100

1000

10000

0 256 512 768 1024

MB

Voxel memory usage (V x V x V float32 numbers)

Storing 10243 voxel grid 
takes 4GB of memory!



• =
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Scaling Voxels: Oct-Trees

Lecture 17 - 22

Tatarchenko et al, “Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”, ICCV 2017

Use voxel grids with heterogenous resolution!



• Mod

51

Observations Re-Rendered 
Observations

Self-supervised Scene Representation Learning

Image Loss

Neural Scene 
Representation

Persistent feature 
representation of 

scene.

Neural Renderer

Render from different 
camera perspectives.

,…, ,…,
Model, e.g., 
depth maps, 
mesh, voxels,

SDF  

Differentiable
Render  
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Observations Re-Rendered 
Observations

Self-supervised Scene Representation Learning

Image Loss

Neural Scene 
Representation

Persistent feature 
representation of 

scene.

Neural Renderer

Render from different 
camera perspectives.

,…, ,…,
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Observations Re-Rendered 
Observations

Scene Representation Networks

Image Loss

Neural Renderer

Φ:ℝ $→ ℝ&

Neural Scene 
Representation

,…, ,…,

Scene represented as an embedding vector per 3D point

Embedding vector per voxel

DeepVoxels



DeepVoxels

54[ Sitzmann et al. 2019 ]
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Ground
Truth

Worral
 et al pix2pix DeepVoxels
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Observations Re-Rendered 
Observations

Scene Representation Networks

Image Loss

Neural Renderer

Φ:ℝ $→ ℝ&

Neural Scene 
Representation

,…, ,…,

Fully connected network ɸ=f(X)

Scene represented as an embedding vector per 3D point

Scene Representation Networks



• Networks that operate on coordinates to generate image 
representations are sometimes called “Compositional Pattern 
Producing Networks” (CPPNs)

57

Image Regression

  [ A. Karpathy ConvNetJS Image Regression demo ]

(R, G, B) = ɸ(x, y) 

x

y

R

G

B

https://cs.stanford.edu/people/karpathy/convnetjs/demo/image_regression.html
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Observations Re-Rendered 
Observations

Scene Representation Networks

Image Loss

Neural Renderer

Φ:ℝ $→ ℝ&

Neural Scene 
Representation

,…, ,…,
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Neural Renderer.
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Neural Renderer Step 1: Intersection Testing.

?
?

?
?

?

Idea: march along ray until arrived at surface.



Neural Renderer Step 1: Intersection Testing.

!"

!#
world 

coordinates

$# feature
vector

Φ:ℝ (→ ℝ*
Scene Representation 

61

𝛅i+1

xi+1

Ray Marching LSTM
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Neural Renderer Step 1: Intersection Testing.

Iteration 0
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Neural Renderer Step 1: Intersection Testing.

Iteration 1
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Neural Renderer Step 1: Intersection Testing.

Iteration 2
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Neural Renderer Step 1: Intersection Testing.

Iteration 3
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Neural Renderer Step 2: Color Generation

Iteration 4
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Neural Renderer Step 1: Intersection Testing.

Iteration …
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Neural Renderer Step 1: Intersection Testing.
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Neural Renderer Step 2: Color Generation

Φ:ℝ $→ ℝ&
Scene Representation 

Color 
MLP

Per-pixel 
Embedding
→RGB
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Observations Re-Rendered 
Observations

Can now train end-to-end with posed images only!

Image Loss

Neural Renderer

Φ:ℝ $→ ℝ&

Neural Scene 
Representation

,…, ,…,



View Synthesis: Shapenet Cars
• Train using 50 observations per object, known cameras

71



72
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Sampling at arbitrary resolutions

32x32

64x64

128x128

512x512

256x256

Surface Normals RGB

Can render scene at any resolution ɸ=f(X)
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parameters !" ∈ ℝ%

parameters !& ∈ ℝ%

parameters !' ∈ ℝ%

parameters !( ∈ ℝ%

Each scene represented by its own SRN.

embedding )" ∈ ℝ*

embedding )& ∈ ℝ*

embedding )' ∈ ℝ*

embedding )( ∈ ℝ*

Ψ:ℝ *→ ℝ%,
z/ ↦ Ψ )1 = !1

Hypernetwork 



Latent Code Interpolation
• Interpolated latent codes give meaningful scenes
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DeepSDF: Learning Continuous 
SDFs for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub,  
Richard Newcombe, Steven Lovegrove

CVPR 2019



[ Slides: Jeong Joon Park ]

DeepSDF
• CPPN for signed distance function, SDF=f(X)



Signed Distance Function

[ Slides: Jeong Joon Park ]



[ Slides: Jeong Joon Park ]

Signed Distance Function



[ Slides: Jeong Joon Park ]

Signed Distance Function



SDF Regression

fully connected
(CPPN)

Estimate parameters of fully connected net f(X) to fit known SDF



Coding Multiple Shapes

Shape Modelling

Assign random codes to each training object, 
optimise network parameters to fit known 3D 



Optimise latent code given partial SDF by backprop to input

Shape Completion





• Another continuous scene representation using a FCN
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Neural Radiance Fields

Predict density at each 
location, integrate along 
ray to get color (volume 

rendering)

[ NeRF, Mildenhall, Srinivasan, Tancik et al. 2020 ]



Results
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 11

Ship

Lego

Microphone

Materials

Ground Truth NeRF (ours) LLFF [20] SRN [30] NV [16]

Fig. 5: Comparisons on test-set views for scenes from our new synthetic dataset
generated with a physically-based renderer. Our method is able to recover fine
details in both geometry and appearance, such as Ship’s rigging, Lego’s gear
and treads, Microphone’s shiny stand and mesh grille, and Material ’s non-
Lambertian reflectance. LLFF exhibits banding artifacts on the Microphone

stand and Material ’s object edges and ghosting artifacts in Ship’s mast and
inside the Lego object. SRN produces blurry and distorted renderings in every
case. Neural Volumes cannot capture the details on the Microphone’s grille or
Lego’s gears, and it completely fails to recover the geometry of Ship’s rigging.

Ground
Truth

NeRF LLFF SRN NV
(Sitzmann)



Neural Radiance Fields

87matthewtancik.com/nerf 

• Neural Radiance Fields, ~10s of input views

http://matthewtancik.com/nerf
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Next Lecture
• Image Generation, Generative Adversarial Networks


