A Lightning Tour of Dense Real-Time Reconstruction Systems

Two key enabling technologies

Structured light projection

General purpose GPU computing

Microsoft Kinect

- Released Nov 2010
- Provides *dense, real-time RGB + D*:
 - 640 x 480 RGB @ 30 Hz
 - 640 x 480 IR (=> depth) @ 30 Hz
- Cost: ~\$100

Microsoft Kinect: Principle of operation

Main idea: Dense depth via structured light projection (active stereo)

Microsoft Kinect: Principle of operation Main idea: Dense depth via structured light projection (active stereo)

- 1. Project IR dots
- 2. Capture IR image
- 3. Identify dots in IR image via local pattern
- 4. Stereo depth estimation

Microsoft Kinect

- Released Nov 2010
- Provides *dense, real-time RGB + D*:
 - 640 x 480 RGB @ 30 Hz
 - 640 x 480 IR (=> depth) @ 30 Hz
- Cost: ~\$100

General purpose GPU programming

CUDA:

- Programming language for *parallel computing* on NVIDIA graphical processing units (GPUs)
- Released by NVIDIA June 2007

KinectFusion

Main idea: Dense depth data (Kinect) + massive parallelism (GPU) = WIN!

Major design points:

- Volumetric (TSDF) environment model, stored on the GPU
 ⇒ Fast (parallel) data fusion
- Kinect pose estimation via iterative closest point (ICP)

[Image credit: E. Bylow et al.]

[R.A. Newcombe et al., "KinectFusion: Real-Time Dense Surface Mapping and Tracking", ISMAR, 2011]

KinectFusion: System architecture

Basic algorithm: *interleave* camera tracking (ICP) and TSDF fusion

SIGGRAPH Talks 2011 **KinectFusion:** Real-Time Dynamic 3D Surface Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1, David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1, Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London 3 Newcastle University 4 Lancaster University 5 University of Toronto

KinectFusion

First real-time, dense SLAM system

But: (naïve) TSDF can only represent a fixed volume
⇒ Can only map inside a fixed area

[R.A. Newcombe et al., "KinectFusion: Real-Time Dense Surface Mapping and Tracking", ISMAR, 2011]

Kintinuous: Spatially-extended KinectFusion

Main idea: Treat the voxel grid used for the TSDF as a *cyclical buffer*

Payoff: Can scale to *arbitrarily large* environments!

[T. Whelan et al., "Kintinuous: Spatially-Extended KinectFusion", RSS, 2012]

Kintinuous: Spatially-extended KinectFusion

Main idea: Treat the voxel grid used for the TSDF as a *cyclical buffer*

Payoff: Can scale to *arbitrarily large* environments!

But: Surface geometry is *fixed* once it's extracted the TSDF

 \Rightarrow How do we deal with *drift*?

The problem of drift

Problem: Kintinuous' odometric camera-pose estimate drifts over time

⇒ This can lead to inconsistency when closing long loops

What to do?

 \Rightarrow Apply **SLAM**

[T. Whelan et al., "Deformation-Based Loop Closure for Large-Scale Dense RGBD-SLAM", IROS 2013]

Kintinuous 2.0

Main idea: Employ *pose-graph SLAM* to correct geometry by *warping space*

Major design points:

- Maintain "cloud slice" ⇔ camera pose correspondence
- Apply pose-graph SLAM to joint camera-pose + vertex surface model
- ⇒ This has the effect of *warping space*

[T. Whelan et al., "Deformation-Based Loop Closure for Large-Scale Dense RGBD-SLAM", IROS 2013]

Kintinuous 2.0

Main idea: Employ *pose-graph SLAM* to correct geometry by *warping space*

[T. Whelan et al., "Real-Time Large-Scale Dense RGB-D SLAM with Volumetric Fusion", IJRR 2014]

Inspiration: Mesh deformation

Embedded Deformation for Shape Manipulation

Robert W. Sumner Johannes Schmid N

Mark Pauly

Applied Geometry Group

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Kintinuous 2.0: System architecture

Main idea: Employ pose-graph SLAM to correct geometry by warping space

⇒Combines *pose-graph SLAM* + *dense reconstruction*

[T. Whelan et al., "Real-Time Large-Scale Dense RGB-D SLAM with Volumetric Fusion", IJRR 2014]

Embedded deformation graph

Correcting drift via mesh deformation

[T. Whelan et al., "Deformation-Based Loop Closure for Large-Scale Dense RGBD-SLAM", IROS 2013]

Kintinuous 2.0 Real-time large scale dense loop closure with volumetric fusion mapping

Thomas Whelan*, Michael Kaess', John J. Leonard', John McDonald*

* Computer Science Department, NUI Maynooth ' Computer Science and Artificial Intelligence Laboratory, MIT

Kintinuous 2.0

Main idea: Employ *pose-graph SLAM* to correct geometry by *warping space*

- Combines *pose-graph SLAM* + *dense reconstruction*
- Employs *space deformation* to correct dense surface geometry

[T. Whelan et al., "Real-Time Large-Scale Dense RGB-D SLAM with Volumetric Fusion", IJRR 2014]

Surface aliasing

Recall: Kintinuous 2.0 attaches *dense structure* to a *pose-graph*

What happens if we revisit the same area many times?

Surface aliasing

Surface aliasing

ElasticFusion: Dense SLAM without a pose graph

Main idea: *Eliminate pose-graph*; perform *direct model-model* correspondence

Major design points:

- Employs a *surfel-based* representation
- Maintains a (*local*) *active model* that tracks camera pose

• Loop closure via *active-model registration*

Payoff: Can directly generate *model-model* correspondence

[T. Whelan et al., "ElasticFusion: Dense SLAM without a Pose-Graph", RSS, 2012]

ElasticFusion: Correspondence generation

[T. Whelan et al., "ElasticFusion: Dense SLAM without a Pose-Graph", RSS, 2012]

ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London

ElasticFusion: Dense SLAM Without A Pose Grap

Extras Video

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London

The Takeaway

- The combination of *inexpensive, real-time, dense RGB-D* + *inexpensive, massively parallel GPGPU computation* has enabled a *revolution* in dense real-time reconstruction.
- LOTS of high-quality, open-source systems available for commodity hardware
- Dive in 🙂!