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Scale

Today’s Yesterday’s Image Taggers just returned a 
bag of words...



Imagenet Progress Over the Years
Source: Imagenet: Where have we been? Where are we going? Fei Fei Li, Jia Deng

Human performance

http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf


Based on a figure from Jia Deng

Now: boxes, segments, human pose...



From Classification to Detection

Photo credit: Michael Mina

Detection = Classification + Localization
● Variable # outputs
● Need to classify based 

on much fewer pixels 
than in Imagenet setting; 
Requires context!
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Image credit: NYTimes (author: Sarah Maslin Nir)



Object 
Detection 

Applications

http://www.youtube.com/watch?v=NlpS-DhayQA


● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint 

detection, video detection, etc...)

Today
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Compute within-region features,

then classify



“Sliding Window” Detection

person!

f( )

f(   )
Typical to enlarge region to include 

some “context”



Sliding window placement
Slide over fine grid

in x, y, scale, aspect ratio
Slide over coarse grid

in x, y, scale, aspect ratio

Slow and Accurate Fast and Not-so-accurate
(… or can it be?)



Bounding Box Regression

Also predict continuous 
offset from anchor to 
“snap” onto object

Coarse sliding window position 
(aka “anchor”)

Idea:
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Using convolutional networks for detection 

● Extract features at sliding window positions via convolution
● Deep networks -> large receptive fields that can account for 

context

Agenda for next few slides: 
● Cover a simplified convnet approach for 

generating detections in detail; 
● Touch on more modern architectures (all of 

which are based on the same concept)



Think of each feature vector vij  as 
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Anchors assumed to be:
● of the same shape, and
● contained and centered in receptive field

Use the same Wloc and Wcls 
for all i, j in anchor grid.

Receptive Field



Target Assignment

groundtruth boxes (person, class 2)

0 0 0

0 0 0

2 0 2

Class target matrix 
(one entry per anchor)

gtxmin - anchorxmin
gtymin - anchorymin
gtxmax - anchorxmax
gtymax - anchorymax

Location targets 
(only for matched anchors)

Step 1: Match anchor boxes to 
groundtruth boxes (based on Euclidean 
distance or overlap area)
Step 2: Give each anchor a classification 
and regression target 

● If anchor has no matching 
groundtruth, it classifies as 0 and no 
regression target is given



Typical Training Objective

Challenge: Dealing with class imbalance (usually way more negative anchors 
(class 0) than positive anchors

Solutions: Subsampling negative anchors, downweighting the loss contribution of 
negatives, hard mining, etc...

L(anchor a) = α * δ(a has matching groundtruth) * L2(t
loc, Wloc·vij)   

+  β * SoftMaxCrossEntropy(tcls, Wcls·vij)

Per-anchor Loss:

Total Loss: Average per-anchor loss over anchors

Common to use other 
location losses here...



Dealing with multiple detections of the 
same object

Duplicate detection problem: Typically 
many anchors will detect the same 
underlying object and give slightly different 
boxes, with slightly different scores.

Solution: remove detections if they overlap 
too much with another higher scoring 
detection.



Non Max Suppression (NMS)

Algorithm:
1. Sort detections in decreasing order with respect 

to score
2. Iterate through sorted detections:

a. Reject a detection if it overlaps with a 
previous (unrejected) detection with IOU 
greater than some threshold

3. Return all unrejected detections

Some shortcomings of NMS to remember:
● Imposes a hard limitation on how 

close objects can be in order to be 
detected

● Similar classes do not suppress each 
other
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Think of each feature vector vij  as 
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

Category score = SoftMax(Conv(V; Wcls))

Offset from anchor = Conv(V; Wloc)

Use convolution to do simultaneous prediction for all anchors:

V

But… if anchors need to be the same shape, how 
do we handle different scales/aspect ratios?



Solution: use multiple Wloc and Wcls (one for each 
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...



Fancier Solution: use multiple anchor grid resolutions



SSD 
(Single Shot Detector --- encapsulates Multibox, YOLO, YOLO v2)
[Liu et al 2016]

Detection “meta-architectures” are a recipe for 
converting classification architectures into 
detection architectures



Another popular meta-architecture

Faster R-CNN 
(Faster Region-based Convolutional Networks)
[Ren et al 2015]



And yet another... but that’s about it!

R-FCN 
(Region based Fully Convolutional Networks)
Dai et al, 2016
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For image classification, life is easy :)

How do we know how good our 
model is?

cat dog catcat

Accuracy: 75%



Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dog

Problem 1: Metrics must handle 
location errors

Should we consider this 
detection to be correct?



Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dogs

Problem 2: Metrics 
must account for 
overprediction and 
underprediction

Groundtruth Dog

Detected Dog

Groundtruth Dog



Intersection over Union (IOU)

IOU =
Intersection

Union

Detection is “correct” if IOU > ᶓ



IoU = 0.5 IoU = 0.7 IoU = 0.95

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf

Intersection over Union (IOU)

Detection BBoxGround-Truth BBox



True/False Positives and Missed Objects

True 
positive

True 
positive

False 
positive

False 
positive

Missed Object

● Match detections and groundtruth 
instances based on IOU

● Count missed groundtruth objects
● Mark detections as TP or FP based 

on whether IOU>ᶓ

Missed Object



Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how 
many were correct (i.e. True Positives)?

Recall: Of the groundtruth instances in our data, what 
fraction of instances were correctly detected (i.e., not 
missed)?

Remember: Precision and Recall are in [0, 1] and higher is better.

Precision = 
#TP

#TP + #FP

Recall = 
#TP

#Groundtruth 
Objects



Trading off between Precision and Recall
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Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence; 

Last step of detection pipeline: use score threshold to select final detections
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decrease recall

Decrease precision, 
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Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence; 

Last step of detection pipeline: use score threshold to select final detections

When would it be better to be on one side of this spectrum than the other?



Precision/Recall Curves and AP (Average Precision)
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Precision/Recall Curves and AP (Average Precision)
P

re
ci

si
on

Recall

Precision / Recall curve

0.0 1.0

AP = Average Precision 
   = Area under PR curve

Remember: 

● AP is always in [0, 1] 

● Higher AP is better

● Always relative to an IOU 

criterion, e.g., AP@.5 IOU, 

AP@.75 IOU, etc...



● How to mark detections as True or False positives based 

on IOU

● What Precision and Recall mean

● And have some vague idea about how P-R Curves and 

Average Precision are computed :)

You should know:
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Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Pick a point on the speed/accuracy tradeoff curve

Caution: this graph is a few 
years old now!



Rule of thumb: SSD (diamonds) faster 
than R-FCN (squares), which is faster 
than Faster R-CNN (circles)



SSD with MobileNet (and low 
resolution images) is fastest 



There is a “pareto-optimal” 
curve.  Those are our favorite 
detectors!



RFCN w/Resnet101, 300 proposals
Faster R-CNN w/Inception Resnet 

V2, 300 proposals

SSD w/MobileNet 
(Low Resolution)

SSD w/Inception V2 
(Low Resolution)

Faster R-CNN w/Resnet101, 
100 proposals



RFCN w/Resnet101, 300 proposals
Faster R-CNN w/Inception Resnet 

V2, 300 proposals

SSD w/MobileNet 
(Low Resolution)

SSD w/Inception V2 
(Low Resolution)

Faster R-CNN w/Resnet101, 
100 proposals



JFT 300M 18K labels

Detections

Transfer weights

Initialize from a model pre-trained to classify 
some other dataset (the larger the better)

See “Revisiting Unreasonable Effectiveness of 
Data in Deep Learning Era” [Sun et al 2017]



Use lower resolution images for speed

Lower resolution much faster;
tends to miss smaller objects



Use a small number of proposals for speed (for 
proposal based architectures)

Lower # of proposals much faster; 
sacrifices a bit of recall



Replace stride 2 convolutions with stride 1
Slower, can boost performance on small objects

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...
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Replace stride 2 convolutions with stride 1
Slower, can boost performance on small objects

Stride 1

Stride 1

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...

Solution: Use atrous convolution (convolution with holes) to compensate 
at the second layer.

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x
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Detection in Videos

Video courtesy of Yuning Chai; 
Image from Jifeng Dai

Video vs static image detection:
● Frames often deteriorated
● Adjacent frames are often near-identical; wasteful to run 

full detection every frame
● Useful to exploit motion cues

https://docs.google.com/file/d/1g9q2hELyVNw_ZYHmLVR19uUzAj3BlheO/preview


Instance Segmentation: the next step up from 
bounding boxes

classify classify and regress 
bounding box per object

classify per pixel classify per pixel per object

(bounding box) 
detection

semantic 
segmentation

instance 
segmentation



Mask R-CNN

Mask R-CNN by He et al, 2017



Example results from ADE20K

Slide courtesy of Alireza Fathi



Keypoint Detection

Slide courtesy of George Papandreou

http://www.youtube.com/watch?v=N-1SDO84q-U




Learning with less supervision
Labeling is hard work!

COCO dataset:
● 200K labeled images
● 1.5 million object instances
● 80 object categories
● ~40 person-years of labeling time!

  Masks take ~x15 time to label 
  compared to bounding boxes.

*Khoreva, Anna, et al. "Simple Does It: Weakly Supervised Instance and Semantic Segmentation." CVPR 2017

Can we learn to predict masks without explicit groundtruth mask annotations?



Bad mask 
estimate

Unrealistic 
Pasted Image

Good mask 
estimate

Realistic 
Pasted Image

Real Image for visual 
comparison

One idea: using “cut+paste” to get indirect 
feedback for mask predictions

Remez, Huang, Brown. "Learning to Segment via Cut-and-Paste." (on arXiv)

Supervised question: “is this predicted mask correct?”

Weakly supervised question: “if I generate a new image by cut+pasting pixels 
inside the mask to a new part of the image, does it look plausible?”



Formalizing the Cut+Paste signal as a GAN 
(Generative Adversarial Network)

generator receives a bounding box 
containing a car and predicts its mask

discriminator alternately sees car 
cut+pasted onto new background, or 

a real car image

★ Both generator and discriminator are trained jointly.



Mask R-CNN trained using Cut+Paste GAN



● Detectors are important and mature 

tech 

● Sliding Window still the way to go

● Convnets can put the sliding in sliding 

window

● Detectors are evaluated with PR curves

● Bounding boxes are only the first step 

to complex scene understanding

Summary





Configuring a model using the API
model {
  faster_rcnn {
    num_classes: 3
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 600
        max_dimension: 1024
      }
    }
    feature_extractor {
      type: 'faster_rcnn_resnet101'
      first_stage_features_stride: 16
    }
...

{cars, people, stop signs}

high resolution 
input images

Faster R-CNN, Resnet 101



Configuring training using the API
train_config: {
  batch_size: 32
  fine_tune_checkpoint: “/home/jonathanhuang/...”
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.005
          decay_steps: 200000
          decay_factor: 0.95
        }
      }
      ...

learning rate schedule

pre-trained 
detection model 

(from COCO)



TF Object Detection API Model Zoo



Community Creations!

http://www.youtube.com/watch?v=1lT4MoG7tEw


Thanks!


