
CSEP 576: Object Detection with
Convolutional Networks

Jonathan Huang (jonathanhuang@google.com)

University of Washington 17 May 2018

Google AI

mailto:jonathanhuang@google.com

Source: http://karpathy.github.io/2012/10/22/state-of-computer-vision/

Obama
Person
Scale

Today’s Yesterday’s Image Taggers just returned a
bag of words...

Imagenet Progress Over the Years
Source: Imagenet: Where have we been? Where are we going? Fei Fei Li, Jia Deng

Human performance

http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

Based on a figure from Jia Deng

Now: boxes, segments, human pose...

From Classification to Detection

Photo credit: Michael Mina

Detection = Classification + Localization
● Variable # outputs
● Need to classify based

on much fewer pixels
than in Imagenet setting;
Requires context!

Object
Detection

Applications

Object
Detection

Applications

Object
Detection

Applications

Image credit: NYTimes (author: Sarah Maslin Nir)

Object
Detection

Applications

http://www.youtube.com/watch?v=NlpS-DhayQA

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint

detection, video detection, etc...)

Today

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection
background

“Sliding Window” Detection

background

“Sliding Window” Detection

background

“Sliding Window” Detection

person!

“Sliding Window” Detection

person!

f()

f()
Compute within-region features,

then classify

“Sliding Window” Detection

person!

f()

f()
Typical to enlarge region to include

some “context”

Sliding window placement
Slide over fine grid

in x, y, scale, aspect ratio
Slide over coarse grid

in x, y, scale, aspect ratio

Slow and Accurate Fast and Not-so-accurate
(… or can it be?)

Bounding Box Regression

Also predict continuous
offset from anchor to
“snap” onto object

Coarse sliding window position
(aka “anchor”)

Idea:

Bounding Box Regression

person!

Also predict continuous
offset from anchor to
“snap” onto object

Idea:

Coarse sliding window position
(aka “anchor”)

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint

detection, video detection, etc...)

Today

Using convolutional networks for detection

● Extract features at sliding window positions via convolution
● Deep networks -> large receptive fields that can account for

context

Agenda for next few slides:
● Cover a simplified convnet approach for

generating detections in detail;
● Touch on more modern architectures (all of

which are based on the same concept)

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Anchors assumed to be:
● of the same shape, and
● contained and centered in receptive field

Use the same Wloc and Wcls
for all i, j in anchor grid.

Receptive Field

Target Assignment

groundtruth boxes (person, class 2)

0 0 0

0 0 0

2 0 2

Class target matrix
(one entry per anchor)

gtxmin - anchorxmin
gtymin - anchorymin
gtxmax - anchorxmax
gtymax - anchorymax

Location targets
(only for matched anchors)

Step 1: Match anchor boxes to
groundtruth boxes (based on Euclidean
distance or overlap area)
Step 2: Give each anchor a classification
and regression target

● If anchor has no matching
groundtruth, it classifies as 0 and no
regression target is given

Typical Training Objective

Challenge: Dealing with class imbalance (usually way more negative anchors
(class 0) than positive anchors

Solutions: Subsampling negative anchors, downweighting the loss contribution of
negatives, hard mining, etc...

L(anchor a) = α * δ(a has matching groundtruth) * L2(t
loc, Wloc·vij)

+ β * SoftMaxCrossEntropy(tcls, Wcls·vij)

Per-anchor Loss:

Total Loss: Average per-anchor loss over anchors

Common to use other
location losses here...

Dealing with multiple detections of the
same object

Duplicate detection problem: Typically
many anchors will detect the same
underlying object and give slightly different
boxes, with slightly different scores.

Solution: remove detections if they overlap
too much with another higher scoring
detection.

Non Max Suppression (NMS)

Algorithm:
1. Sort detections in decreasing order with respect

to score
2. Iterate through sorted detections:

a. Reject a detection if it overlaps with a
previous (unrejected) detection with IOU
greater than some threshold

3. Return all unrejected detections

Some shortcomings of NMS to remember:
● Imposes a hard limitation on how

close objects can be in order to be
detected

● Similar classes do not suppress each
other

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

A simplified convnet for detection

Receptive Field

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Use the same Wloc and Wcls for all i, j
in anchor grid if anchors are:

● of the same shape, and
● contained and centered in

receptive field

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

Category score = SoftMax(Conv(V; Wcls))

Offset from anchor = Conv(V; Wloc)

Use convolution to do simultaneous prediction for all anchors:

V

Think of each feature vector vij as
corresponding to a sliding window (anchor).

vij

Anchor

A simplified convnet for detection

Receptive Field

Category score = SoftMax(Wcls·vij)

Offset from anchor = Wloc·vij

Category score = SoftMax(Conv(V; Wcls))

Offset from anchor = Conv(V; Wloc)

Use convolution to do simultaneous prediction for all anchors:

V

But… if anchors need to be the same shape, how
do we handle different scales/aspect ratios?

Solution: use multiple Wloc and Wcls (one for each
aspect ratio/scale)

SoftMax(Wcls,ar1·vij)
Wloc,ar1·vij

SoftMax(Wcls,ar2·vij)
Wloc,ar2·vij

SoftMax(Wcls,ar3·vij)
Wloc,ar3·vij
...

Fancier Solution: use multiple anchor grid resolutions

SSD
(Single Shot Detector --- encapsulates Multibox, YOLO, YOLO v2)
[Liu et al 2016]

Detection “meta-architectures” are a recipe for
converting classification architectures into
detection architectures

Another popular meta-architecture

Faster R-CNN
(Faster Region-based Convolutional Networks)
[Ren et al 2015]

And yet another... but that’s about it!

R-FCN
(Region based Fully Convolutional Networks)
Dai et al, 2016

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint

detection, video detection, etc...)

Today

For image classification, life is easy :)

How do we know how good our
model is?

cat dog catcat

Accuracy: 75%

Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dog

Problem 1: Metrics must handle
location errors

Should we consider this
detection to be correct?

Evaluating Detectors is harder :(

Groundtruth Dog

Detected Dogs

Problem 2: Metrics
must account for
overprediction and
underprediction

Groundtruth Dog

Detected Dog

Groundtruth Dog

Intersection over Union (IOU)

IOU =
Intersection

Union

Detection is “correct” if IOU > ᶓ

IoU = 0.5 IoU = 0.7 IoU = 0.95

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf

Intersection over Union (IOU)

Detection BBoxGround-Truth BBox

True/False Positives and Missed Objects

True
positive

True
positive

False
positive

False
positive

Missed Object

● Match detections and groundtruth
instances based on IOU

● Count missed groundtruth objects
● Mark detections as TP or FP based

on whether IOU>ᶓ

Missed Object

Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how
many were correct (i.e. True Positives)?

Recall: Of the groundtruth instances in our data, what
fraction of instances were correctly detected (i.e., not
missed)?

Remember: Precision and Recall are in [0, 1] and higher is better.

Precision =
#TP

#TP + #FP

Recall =
#TP

#Groundtruth
Objects

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Increase precision,
decrease recall

Decrease precision,
increase recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

Trading off between Precision and Recall

score/confidence
threshold

99
%
Do
g

90
%
Ca
t

50
%
Hu
ma
n

30
%
Cu
p

10
%
La
un
dr
y
Ma
ch
in
e

2%
 T
or
ti
ll
a

0.0 1.0

Increase precision,
decrease recall

Decrease precision,
increase recall

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

When would it be better to be on one side of this spectrum than the other?

Precision/Recall Curves and AP (Average Precision)
P

re
ci

si
on

Recall

Precision / Recall curve

0.0 1.0

Precision/Recall Curves and AP (Average Precision)
P

re
ci

si
on

Recall

Precision / Recall curve

0.0 1.0

AP = Average Precision
 = Area under PR curve

Remember:

● AP is always in [0, 1]

● Higher AP is better

● Always relative to an IOU

criterion, e.g., AP@.5 IOU,

AP@.75 IOU, etc...

● How to mark detections as True or False positives based

on IOU

● What Precision and Recall mean

● And have some vague idea about how P-R Curves and

Average Precision are computed :)

You should know:

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint

detection, video detection, etc...)

Today

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

Pick a point on the speed/accuracy tradeoff curve

Caution: this graph is a few
years old now!

Rule of thumb: SSD (diamonds) faster
than R-FCN (squares), which is faster
than Faster R-CNN (circles)

SSD with MobileNet (and low
resolution images) is fastest

There is a “pareto-optimal”
curve. Those are our favorite
detectors!

RFCN w/Resnet101, 300 proposals
Faster R-CNN w/Inception Resnet

V2, 300 proposals

SSD w/MobileNet
(Low Resolution)

SSD w/Inception V2
(Low Resolution)

Faster R-CNN w/Resnet101,
100 proposals

RFCN w/Resnet101, 300 proposals
Faster R-CNN w/Inception Resnet

V2, 300 proposals

SSD w/MobileNet
(Low Resolution)

SSD w/Inception V2
(Low Resolution)

Faster R-CNN w/Resnet101,
100 proposals

JFT 300M 18K labels

Detections

Transfer weights

Initialize from a model pre-trained to classify
some other dataset (the larger the better)

See “Revisiting Unreasonable Effectiveness of
Data in Deep Learning Era” [Sun et al 2017]

Use lower resolution images for speed

Lower resolution much faster;
tends to miss smaller objects

Use a small number of proposals for speed (for
proposal based architectures)

Lower # of proposals much faster;
sacrifices a bit of recall

Replace stride 2 convolutions with stride 1
Slower, can boost performance on small objects

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...

Replace stride 2 convolutions with stride 1
Slower, can boost performance on small objects

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...

Replace stride 2 convolutions with stride 1
Slower, can boost performance on small objects

Stride 1

Stride 1

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

Problem: Doing this directly can reduce receptive field size...

Solution: Use atrous convolution (convolution with holes) to compensate
at the second layer.

Stride 1

Stride 2

Stride 1

Stride 1

x x x x x x x x x

x x x x x

x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

● Sliding Window Detectors

● Detection with Convolutional Networks

● How to Evaluate a Detector

● Practical tips/tricks

● Variations on a theme (instance segmentation, keypoint

detection, video detection, etc...)

Today

Detection in Videos

Video courtesy of Yuning Chai;
Image from Jifeng Dai

Video vs static image detection:
● Frames often deteriorated
● Adjacent frames are often near-identical; wasteful to run

full detection every frame
● Useful to exploit motion cues

https://docs.google.com/file/d/1g9q2hELyVNw_ZYHmLVR19uUzAj3BlheO/preview

Instance Segmentation: the next step up from
bounding boxes

classify classify and regress
bounding box per object

classify per pixel classify per pixel per object

(bounding box)
detection

semantic
segmentation

instance
segmentation

Mask R-CNN

Mask R-CNN by He et al, 2017

Example results from ADE20K

Slide courtesy of Alireza Fathi

Keypoint Detection

Slide courtesy of George Papandreou

http://www.youtube.com/watch?v=N-1SDO84q-U

Learning with less supervision
Labeling is hard work!

COCO dataset:
● 200K labeled images
● 1.5 million object instances
● 80 object categories
● ~40 person-years of labeling time!

 Masks take ~x15 time to label
 compared to bounding boxes.

*Khoreva, Anna, et al. "Simple Does It: Weakly Supervised Instance and Semantic Segmentation." CVPR 2017

Can we learn to predict masks without explicit groundtruth mask annotations?

Bad mask
estimate

Unrealistic
Pasted Image

Good mask
estimate

Realistic
Pasted Image

Real Image for visual
comparison

One idea: using “cut+paste” to get indirect
feedback for mask predictions

Remez, Huang, Brown. "Learning to Segment via Cut-and-Paste." (on arXiv)

Supervised question: “is this predicted mask correct?”

Weakly supervised question: “if I generate a new image by cut+pasting pixels
inside the mask to a new part of the image, does it look plausible?”

Formalizing the Cut+Paste signal as a GAN
(Generative Adversarial Network)

generator receives a bounding box
containing a car and predicts its mask

discriminator alternately sees car
cut+pasted onto new background, or

a real car image

★ Both generator and discriminator are trained jointly.

Mask R-CNN trained using Cut+Paste GAN

● Detectors are important and mature

tech

● Sliding Window still the way to go

● Convnets can put the sliding in sliding

window

● Detectors are evaluated with PR curves

● Bounding boxes are only the first step

to complex scene understanding

Summary

Configuring a model using the API
model {
 faster_rcnn {
 num_classes: 3
 image_resizer {
 keep_aspect_ratio_resizer {
 min_dimension: 600
 max_dimension: 1024
 }
 }
 feature_extractor {
 type: 'faster_rcnn_resnet101'
 first_stage_features_stride: 16
 }
...

{cars, people, stop signs}

high resolution
input images

Faster R-CNN, Resnet 101

Configuring training using the API
train_config: {
 batch_size: 32
 fine_tune_checkpoint: “/home/jonathanhuang/...”
 optimizer {
 rms_prop_optimizer: {
 learning_rate: {
 exponential_decay_learning_rate {
 initial_learning_rate: 0.005
 decay_steps: 200000
 decay_factor: 0.95
 }
 }
 ...

learning rate schedule

pre-trained
detection model

(from COCO)

TF Object Detection API Model Zoo

Community Creations!

http://www.youtube.com/watch?v=1lT4MoG7tEw

Thanks!

