CSEP 576: Object Detection with Convolutional Networks

Jonathan Huang (jonathanhuang@google.com)

University of Washington 17 May 2018

Google Al

Today's Yesterday's Image Taggers just returned a bag of words...

Source: http://karpathy.github.io/2012/10/22/state-of-computer-vision/

Imagenet Progress Over the Years

Now: boxes, segments, human pose...

Based on a figure from Jia Deng

From Classification to Detection

Detection = Classification + Localization

- Variable # outputs
 - Need to classify based on much fewer pixels than in Imagenet setting; Requires context!

Bus Lane Blocked, He Trained His Computer to Catch Scofflaws

Alex Bell developed a computer program that used a traffic camera to identify how often bus and bicycle lanes were blocked by unauthorized vehicles along one block in Harlem. Christopher Lee for The New York Times

Image credit: NYTimes (author: Sarah Maslin Nir)

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks
- Variations on a theme (instance segmentation, keypoint detection, video detection, etc...)

background

background

Typical to enlarge region to include some "context"

Sliding window placement

Slide over *fine grid* in x, y, scale, aspect ratio

Slow and Accurate

Slide over *coarse grid* in x, y, scale, aspect ratio

Fast and Not-so-accurate (... or can it be?)

Bounding Box Regression

Idea:

Also predict continuous offset from anchor to "snap" onto object

Bounding Box Regression

Idea:

Also predict continuous offset from anchor to "snap" onto object

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks
- Variations on a theme (instance segmentation, keypoint detection, video detection, etc...)

Using convolutional networks for detection

Detection Generator

Multimore

Agenda for next few slides:

- Cover a simplified convnet approach for generating detections in detail;
- Touch on more modern architectures (all of which are based on the same concept)

reature Extractor

- Extract features at sliding window positions via convolution
- Deep networks -> large receptive fields that can account for context

A simplified convnet for detection

Target Assignment

groundtruth boxes (person, class 2)

Step 1: Match anchor boxes to groundtruth boxes (based on Euclidean distance or overlap area) Step 2: Give each anchor a classification and regression target

If anchor has no matching groundtruth, it classifies as 0 and no regression target is given

Location targets (only for matched anchors)

gt_{xmin}	-	$\operatorname{anchor}_{\operatorname{xmin}}$	
$\operatorname{gt}_{\operatorname{ymin}}$	-	anchorymin	
gt _{xmax}	-	anchor	
$\operatorname{gt}_{\operatorname{ymax}}$	-	$\operatorname{anchor}_{\operatorname{ymax}}$	
			_

Typical Training Objective

Common to use other location losses here...

Per-anchor Loss:

L(anchor **a**) = $\alpha * \delta(\mathbf{a} \text{ has matching groundtruth}) * L_2(\mathbf{t}^{\text{loc}}, W^{\text{loc}} \cdot \mathbf{v}_{ii})$

+
$$\beta$$
 * SoftMaxCrossEntropy(\mathbf{t}^{cls} , $W^{cls} \cdot \mathbf{v}_{ij}$)

Total Loss: Average per-anchor loss over anchors

Challenge: Dealing with class imbalance (usually way more negative anchors (class 0) than positive anchors

Solutions: Subsampling negative anchors, downweighting the loss contribution of negatives, hard mining, etc...

Dealing with multiple detections of the same object

Duplicate detection problem: Typically many anchors will detect the same underlying object and give slightly different boxes, with slightly different scores.

Solution: remove detections if they overlap too much with another higher scoring detection.

Non Max Suppression (NMS)

Algorithm:

- 1. Sort detections in decreasing order with respect to score
- 2. Iterate through sorted detections:
 - a. Reject a detection if it overlaps with a previous (unrejected) detection with IOU greater than some threshold
- 3. Return all unrejected detections

Some shortcomings of NMS to remember:

- Imposes a hard limitation on how close objects can be in order to be detected
- Similar classes do not suppress each other

A simplified convnet for detection

A simplified convnet for detection

A simplified convnet for detection

A simplified convnet for detection

Solution: use multiple W^{loc} and W^{cls} (one for each aspect ratio/scale)

• • •

Fancier Solution: use multiple anchor grid resolutions

SSD

(Single Shot Detector --- encapsulates Multibox, YOLO, YOLO v2) [Liu et al 2016]

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks
- Variations on a theme (instance segmentation, keypoint detection, video detection, etc...)

How do we know how good our model is?

Evaluating Detectors is harder :(

Problem 1: Metrics must handle location errors

Should we consider this detection to be correct?

Evaluating Detectors is harder :(

Problem 2: Metrics must account for overprediction and underprediction

Intersection over Union (IOU)

IOU = Intersection Union

Detection is "correct" if IOU > α

Intersection over Union (IOU)

IoU = 0.5

IoU = **0.7**

IoU = 0.95

Ground-Truth BBox

Detection BBox

Slide credit: http://image-net.org/challenges/talks/2016/ECCV2016_ilsvrc_coco_detection_segmentation.pdf

True/False Positives and Missed Objects

Summarizing Performance with Precision/Recall

Precision: Of the detections our model produced, how many were correct (i.e. True Positives)?

#TP Precision = ______ #TP + #FP

Recall: Of the groundtruth instances in our data, what fraction of instances were correctly detected (i.e., not missed)? $_{\#TP}$

Recall = ______ #Groundtruth Objects

Remember: Precision and Recall are in [0, 1] and higher is better.

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Detectors usually produce thousands of boxes (sliding windows), each with some score/confidence;

Last step of detection pipeline: use score threshold to select final detections

When would it be better to be on one side of this spectrum than the other?

Precision/Recall Curves and AP (Average Precision)

Precision

Precision/Recall Curves and AP (Average Precision)

Remember:

- AP is always in [0, 1]
- Higher AP is better
- Always relative to an IOU criterion, e.g., AP@.5 IOU, AP@.75 IOU, etc...

You should know:

- How to mark detections as True or False positives based on IOU
- What *Precision* and *Recall* mean
- And have some vague idea about how P-R Curves and Average Precision are computed :)

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks
- Variations on a theme (instance segmentation, keypoint detection, video detection, etc...)

Pick a point on the speed/accuracy tradeoff curve

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Speed/accuracy trade-offs for modern convolutional object detectors. CVPR 2017

RFCN w/Resnet101, 300 proposals

Faster R-CNN w/Inception Resnet V2, 300 proposals

SSD w/MobileNet (Low Resolution)

SSD w/Inception V2 (Low Resolution)

Faster R-CNN w/Resnet101, 100 proposals

RFCN w/Resnet101, 300 proposals

Faster R-CNN w/Inception Resnet V2, 300 proposals

58.0

56.3

37.4

35.5

ImageNet+300M

Inception ResNet [37]

See "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era" [Sun et al 2017]

Use lower resolution images for speed

Use a small number of proposals for speed (for proposal based architectures)

Lower # of proposals much faster; sacrifices a bit of recall

Replace stride 2 convolutions with stride 1

Slower, can boost performance on small objects

Problem: Doing this directly can reduce receptive field size...

Replace stride 2 convolutions with stride 1

Slower, can boost performance on small objects

Problem: Doing this directly can reduce receptive field size...
Replace stride 2 convolutions with stride 1

Slower, can boost performance on small objects

Problem: Doing this directly can reduce receptive field size...

Solution: Use *atrous* convolution (convolution with holes) to compensate at the second layer.

- Sliding Window Detectors
- Detection with Convolutional Networks
- How to Evaluate a Detector
- Practical tips/tricks
- Variations on a theme (instance segmentation, keypoint detection, video detection, etc...)

Detection in Videos

Video vs static image detection:

- Frames often deteriorated
- Adjacent frames are often near-identical; wasteful to run full detection every frame
- Useful to exploit motion cues

Video courtesy of Yuning Chai; Image from Jifeng Dai

Instance Segmentation: the next step up from bounding boxes

classify

classify and regress bounding box per object

> (bounding box) detection

classify per pixel

semantic segmentation

classify per pixel per object

instance segmentation

Mask R-CNN

Mask R-CNN by He et al, 2017

Example results from ADE20K

Slide courtesy of Alireza Fathi

Keypoint Detection

Slide courtesy of George Papandreou

Learning with less supervision

Labeling is hard work!

COCO dataset:

- 200K labeled images
- 1.5 million object instances
- 80 object categories
- ~40 person-years of labeling time!

Masks take ~x15 time to label compared to bounding boxes.

Can we learn to predict masks without explicit groundtruth mask annotations?

*Khoreva, Anna, et al. "Simple Does It: Weakly Supervised Instance and Semantic Segmentation." CVPR 2017

One idea: using "cut+paste" to get indirect feedback for mask predictions

Supervised question: "is this predicted mask correct?"

Weakly supervised question: "if I generate a new image by cut+pasting pixels inside the mask to a new part of the image, does it look plausible?"

Remez, Huang, Brown. "Learning to Segment via Cut-and-Paste." (on arXiv)

Formalizing the Cut+Paste signal as a GAN (Generative Adversarial Network)

★ Both generator and discriminator are trained jointly.

Mask R-CNN trained using Cut+Paste GAN

Summary

- Detectors are important and mature tech
- Sliding Window still the way to go
- Convnets can put the sliding in sliding window
- Detectors are evaluated with PR curves
- Bounding boxes are only the first step to complex scene understanding

tensorflow / models		O Unwatch +	1,311	\star Un	star 17,218	¥ Fork	6,704
<> Code (1) Issues 196	Pull requests 29 Projects 0	💷 Wiki 🛛 I	nsights -				
Branch: master - models / ob	ject_detection /	[Create r	new file	Upload files	Find file	History
derekjchow committed with sg	uada Make Record scripts python3 compat	ible. (#1614)			Latest commit	057203e 2 h	iours ago
anchor_generators	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
box_coders	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
builders	Fix compatibility for model_builder_t	test.py (#1571)				4	days ago
core	Add Tensorflow Object Detection A	API. (#1561) 6 days ag			days ago		
data	Add Tensorflow Object Detection A	tion API. (#1561) 6 days ag			days ago		
data_decoders	Add Tensorflow Object Detection A	Pl. (#1561)				6	days ago
g3doc	Fix ML Engine Dashboard link (#159	9)				a	day ago
matchers	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
meta_architectures	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
models	Use spatial_squeeze=False for ResM	Net feature extra	ctors. (#1	586)		4	days ago
protos	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
samples	Reduce batchsize from 32->24 for	SSD configs.				5	days ago
test_images	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
utils	Change visualizer font and jupyter r	notebook line thi	ckness (#	1589)		4	days ago
BUILD	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
README.md	Clean up documentation. (#1563)					5	days ago
initpy	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
create_pascal_tf_record.py	Make Record scripts python3 comp	atible. (#1614)				2 h	ours ago
create_pascal_tf_record_test.p	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
create_pet_tf_record.py	Make Record scripts python3 comp	atible. (#1614)				2 h	ours ago
eval.py	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
eval_util.py	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
evaluator.py	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago
export_inference_graph.py	Add Tensorflow Object Detection A	PI. (#1561)				6	days ago

I README.md

Tensorflow Object Detection API

Creating accurate machine learning models capable of localizing and identifying multiple objects in a single image remains a core challenge in computer vision. The TensorFlow Object Detection API is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. At Google we've certainly found this codebase to be useful for our computer vision needs, and we hope that you will as well.

Contributions to the codebase are welcome and we would love to hear back from you if you find this API useful. Finally if you use the Tensorflow Object Detection API for a research publication, please consider citing:

"Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K, CVPR 2017

[link][bibtex]

Maintainers

- Jonathan Huang, github: jch1
- Vivek Rathod, github: tombstone
- Derek Chow, github: derekjchow
- Chan Sun aithub iosul

Configuring a model using the API model { {cars, people, stop signs} faster_rcnn { num_classes: 3 image resizer { high resolution keep_aspect_ratio_resizer { input images min dimension: 600 max dimension: 1024 feature extractor { type: 'faster_rcnn_resnet101' Faster R-CNN, Resnet 101 first_stage_features_stride: 16

Configuring training using the API

```
train config: {
batch size: 32
                                                                 pre-trained
fine_tune_checkpoint: "/home/jonathanhuang/..."
                                                              detection model
optimizer {
                                                                (from COCO)
 rms prop optimizer: {
  learning rate: {
                                             learning rate schedule
   exponential_decay_learning rate {
     initial learning rate: 0.005
     decay steps: 200000
     decay factor: 0.95
```

. . .

TF Object Detection API Model Zoo

COCO-trained models {#coco-models}

Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v2_coco	31	22	Boxes
ssdlite_mobilenet_v2_coco	27	22	Boxes
ssd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
rfcn_resnet101_coco	92	30	Boxes
faster_rcnn_resnet101_coco	106	32	Boxes
faster_rcnn_resnet101_lowproposals_coco	82		Boxes
faster_rcnn_inception_resnet_v2_atrous_coco	620	37	Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco	241		Boxes
faster_rcnn_nas	1833	43	Boxes
faster_rcnn_nas_lowproposals_coco	540		Boxes
mask_rcnn_inception_resnet_v2_atrous_coco	771	36	Masks
mask_rcnn_inception_v2_coco	79	25	Masks
mask_rcnn_resnet101_atrous_coco	470	33	Masks
mask_rcnn_resnet50_atrous_coco	343	29	Masks

Kitti-trained models {#kitti-models}

Model name	Speed (ms)	Pascal mAP@0.5	Outputs	
faster_rcnn_resnet101_kitti	79	87	Boxes	

Open Images-trained models {#open-images-models}

Model name	Speed (ms)	Open Images mAP@0.5[^2]	Outputs
faster_rcnn_inception_resnet_v2_atrous_oid	727	37	Boxes
faster rcnn inception resnet v2 atrous lowproposals oid	347		Boxes

AVA v2.1 trained models {#ava-models}

Model name	Speed (ms)	Pascal mAP@0.5	Outputs
faster_rcnn_resnet101_ava_v2.1	93	11	Boxes

Community Creations!

Follow V G DATA SCIENCE MACHINE LEARNING PROGRAMMING VISUALIZATION EVENTS LETTERS CONTRIBUTE

How to train your own Object Detector with TensorFlow's Object Detector API

This is a follow-up post on "Building a Real-Time Object Recognition App with Tensorflow and OpenCV" where I focus on training my own classes. Specifically, I trained my own Raccoon detector on a dataset that I collected and labeled by myself. The full dataset is available on my Github repo.

By the way, here is the Raccoon detector in action:

The Raccoon detector

If you want to know the details, you should continue reading

м

Is Google Tensorflow Object Detection API the easiest way to implement image recognition?

Doing cool things with data!

There are many different ways to do image recognition. Google recently released a new Tensorflow Object Detection API to give computer vision everywhere a boost. Any offering from Google is not to be taken lightly, and so I decided to try my hands on this new API and use it on videos from you tube :) See the result below:

You can find the full code on my Github repo

Testing Custom Object Detector -TensorFlow Object Detection A... 4,524 views · 3 days ago

Training Custom Object Detector - TensorFlow Object Detection 3,007 views · 3 days ago

Creating TFRecords - TensorFlow Tracking Custom Objects -**Object Detection API Tutorial p.4** 3,145 views · 3 days ago

TensorFlow Object Detection A... 4,600 views · 3 days ago

Adapting to video feed -**TensorFlow Object Detection A...** 15,157 views · 6 days ago

Intro - TensorFlow Object **Detection API Tutorial p.1** 16,571 views · 1 week ago

Thanks!

