Optimization 101

CSE P576
David M. Rosen
Recap

First half:
• Photogrammetry and bundle adjustment
• Maximum likelihood estimation

This half:
• Basic theory of optimization
 (i.e. how to actually do MLE)
The Main Idea

Given: $f: \mathbb{R}^n \to \mathbb{R}$, we want to

$$\min_x f(x)$$

Problem: We have no idea how to actually do this ...

Main idea: Let’s approximate f with a simple model function m, and use that to search for a minimizer of f.
Optimization Meta-Algorithm

Given: A function $f: \mathbb{R}^n \to \mathbb{R}$ and an initial guess $x_0 \in \mathbb{R}^n$ for a minimizer

Iterate:
- Construct a model $m_i(h) \approx f(x_i + h)$ of f near x_i.
- Use m_i to search for a descent direction h ($f(x + h) < f(x)$)
- Update $x_{i+1} \leftarrow x_i + h$

until convergence
A first example

Let’s consider applying the Basic Algorithm to minimize

$$f(x) = x^4 - 3x^2 + x + 2$$

starting at $$x_0 = -\frac{1}{2}$$.

Q: How can we approximate (model) $$f$$ near $$x_0$$?

A: Let’s try linearizing! Take

$$m_0(h) \triangleq f(x_0) + f'(x_0)h$$
Gradient descent

Given:
- A function $f : R^n \rightarrow R$
- An initial guess $x_0 \in R^n$ for a minimizer
- Sufficient decrease parameter $c \in (0,1)$, stepsize shrinkage parameter $\tau \in (0,1)$
- Gradient tolerance $\epsilon > 0$

Iterate:
- Compute search direction $p = -\nabla f(x_i)$ at x_i
- Set initial stepsize $\alpha = 1$
- Backtracking line search: Update $\alpha \leftarrow \tau \alpha$ until the Armijo-Goldstein sufficient decrease condition:
 \[f(x_i + \alpha p) < f(x_i) - c\alpha \|p\|^2 \]
 is satisfied
- Update $x_{i+1} \leftarrow x_i + \alpha p$
 until $\|\nabla f(x_i)\| < \epsilon$
Exercise: Minimizing a quadratic

Try minimizing the quadratic:

\[f(x, y) = x^2 - xy + \kappa y^2 \]

using gradient descent, starting at \(x_0 = (1, 1) \) and using \(c, \tau = \frac{1}{2} \) and \(\epsilon = 10^{-3} \), for a few different values of \(\kappa \), say \(\kappa \in \{1, 10, 100, 1000\} \)

Q: If you plot function value \(f(x_i) \) vs. iteration number \(i \), what do you notice?

Gradient Descent

Given:
• A function \(f: R^n \rightarrow R \)
• An initial guess \(x_0 \in R^n \) for a minimizer
• Sufficient decrease parameter \(c \in (0,1) \), stepsize shrinkage parameter \(\tau \in (0,1) \)
• Gradient tolerance \(\epsilon > 0 \)

Iterate:
• Compute search direction \(p = -\nabla f(x_i) \) at \(x_i \)
• Set initial stepsize \(\alpha = 1 \)
• Line search: update \(\alpha \leftarrow \tau \alpha \) until
 \[f(x_i + \alpha p) < f(x_i) - c \alpha \|p\|^2 \]
• Update \(x_{i+1} \leftarrow x_i + \alpha p \)
 until \(\|\nabla f(x_i)\| < \epsilon \)
Exercise: Minimizing a quadratic

\[\kappa = 1 \]
Exercise: Minimizing a quadratic

$\kappa = 10$
Exercise: Minimizing a quadratic

$$\kappa = 100$$
The problem of conditioning

Gradient descent doesn’t perform well when f is poorly conditioned (has “stretched” contours).

Q: How can we improve our local model:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h$$

so that it handles curvature better?
WE NEED TO GO DEEPER
Second-order methods

Let’s try adding in curvature information using a *second-order* model for f:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h + \frac{1}{2} h^T \nabla^2 f(x) h$$

NB: If $\nabla^2 f(x) > 0$, then $m_i(h)$ has a *unique minimizer*:

$$h_N = -\left(\nabla^2 f(x_0)\right)^{-1} \nabla f(x_0)$$

In that case, using the update rule:

$$x_{i+1} \leftarrow x_i + h_N$$

gives *Newton’s method*
Exercise: Minimizing a quadratic

Let’s try minimizing the quadratic:

\[f(x, y) = x^2 - xy + \kappa y^2 \]

again, this time using Newton’s method, starting at \(x_0 = (1, 1) \) and using \(\epsilon = 10^{-3} \), for

\[\kappa \in \{1, 10, 100, 1000 \} \]

If you plot function value \(f(x_i) \) vs. iteration number \(i \), what do you notice?

Newton’s method

Given:

- A function \(f: \mathbb{R}^n \to \mathbb{R} \)
- An initial guess \(x_0 \in \mathbb{R}^n \) for a minimizer
- Gradient tolerance \(\epsilon > 0 \)

Iterate:

- Compute gradient \(\nabla f(x_i) \) and Hessian \(\nabla^2 f(x_i) \)
- Compute Newton step:
 \[h_N = -\left(\nabla^2 f(x_0)\right)^{-1} \nabla f(x_0) \]
- Update \(x_{i+1} \leftarrow x_i + h_N \)
- until \(\|\nabla f(x_i)\| < \epsilon \)
Quasi-Newton methods

Newton’s method is **fast**! (It has a *quadratic* convergence rate)

But:
- h_N is only guaranteed to be a descent direction if $\nabla^2 f(x_i) > 0$
- Computing exact Hessians can be expensive!

Quasi-Newton methods: Use a *positive-definite approximate Hessian* B_i in the model function:

$$m_i(h) = f(x_i) + \nabla f(x_i)^T h + \frac{1}{2} h^T B_i h$$

$\Rightarrow m_i(h)$ *always* has a unique minimizer:

$$h_{QN} = -B_i^{-1} \nabla f(x_i)$$

$\Rightarrow h_{QN}$ is *always* a descent direction!
Quasi-Newton method with line search

Given:
• A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)
• An initial guess \(x_0 \in \mathbb{R}^n \) for a minimizer
• Sufficient decrease parameter \(c \in (0,1) \), stepsize shrinkage parameter \(\tau \in (0,1) \)
• Gradient tolerance \(\epsilon > 0 \)

Iterate:
• Compute gradient \(g_i = \nabla f(x_i) \) and positive-definite Hessian approximation \(B_i \) at \(x_i \)
• Compute quasi-Newton step:
 \[
 h_{QN} = -B_i^{-1} g_i
 \]
• Set initial stepsize \(\alpha = 1 \)
• Backtracking line search: Update \(\alpha \leftarrow \tau \alpha \) until the Armijo-Goldstein sufficient decrease condition:
 \[
 f(x_i + \alpha h_{QN}) < f(x_i) + c \alpha g_i^T h_{QN}
 \]
 is satisfied
• Update \(x_{i+1} \leftarrow x_i + \alpha h_{QN} \)
until \(\|g_i\| < \epsilon \)
Different choices of B_i give different QN algorithms
⇒ Can trade off accuracy of B_i with computational cost

LOTS of possibilities here!
• Gauss-Newton
• Levenberg-Marquardt
• (L-) BFGS
• Broyden
• etc ...

⇒ Don’t be afraid to experiment 😊!
Special case: The Gauss-Newton method

A quasi-Newton algorithm for minimizing a *nonlinear least-squares objective*:

\[f(x) = \|r(x)\|^2 \]

Uses the local quadratic model obtained by *linearizing* \(r \):

\[m_i(h) = \|r(x_i) + J(x_i)h\|^2 \]

where \(J(x_i) \triangleq \frac{\partial r}{\partial x}(x_i) \) is the *Jacobian* of \(r \).

Equivalently:

\[g_i = 2J(x_i)^T r(x_i), \quad B_i = 2J(x_i)^T J(x_i) \]
A word on linear algebra

The dominant cost (memory + time) in a QN method is **linear algebra**:

- Constructing the Hessian approximation B_i
- Solving the linear system:
 \[B_i h_{QN} = -h_{QN} \]

⇒ Fast/robust linear algebra is **essential** for efficient QN methods

- Take advantage of sparsity in B_i!

- **NEVER, NEVER, NEVER INVERT** B_i directly!!!
 - It’s incredibly expensive and unnecessary
 - **Use instead** [cf. Golub & Van Loan’s *Matrix Computations*]:
 - *Matrix factorizations*: QR, Cholesky, LDLT
 - *Iterative linear methods*: conjugate gradient
A word on linear algebra

NEVER INVERT B_i!!!
Optimization methods: Cheat sheet

First-order methods
Use only gradient information
- **Pro:** Local model is inexpensive
- **Con:** Slow (linear) convergence rate

Canonical example: Gradient descent

Best for:
- Moderate accuracy
- Very large problems

Second-order methods
Use (some) 2nd-order information
- **Pro:** Fast (superlinear) convergence
- **Con:** Local model can be expensive

Canonical example: Newton’s method

Best for:
- High accuracy
- Small to moderately large problems