Image Segmentation

Today's Readings

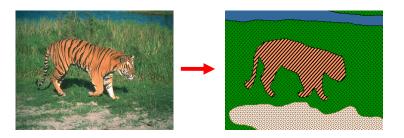
• Szesliski Chapter 5

Image Segmentation

We will consider different methods

- K-means clustering (color-based)
- Normalized Cuts (region-based)

From images to objects



What Defines an Object?

- · Subjective problem, but has been well-studied
- Gestalt Laws seek to formalize this
 - proximity, similarity, continuation, closure, common fate

Image histograms

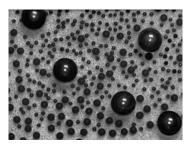
How many "orange" pixels are in this image?

- This type of question answered by looking at the *histogram*
- A histogram counts the number of occurrences of each color
 - Given an image $\ F[x,y] o RGB$
 - The histogram is $H_F[c] = |\{(x,y) \mid F[x,y] = c\}|$
 - » i.e., for each color value c (x-axis), plot # of pixels with that color (y-axis)
 - What is the dimension of the histogram of an NxN RGB image?

Photoshop demo

What do histograms look like?

Photoshop demo



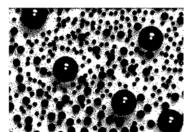
How Many Modes Are There?

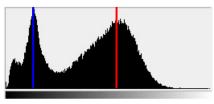
· Easy to see, hard to compute

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
 - photoshop demo



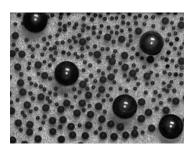


Here's what it looks like if we use two colors

Histogram-based segmentation

Goal

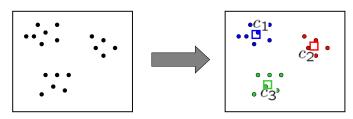
- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
 - photoshop demo



Clustering

How to choose the representative colors?

• This is a clustering problem!



Objective

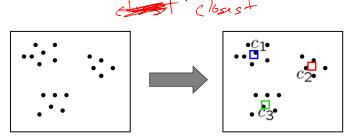
- · Each point should be as close as possible to a cluster center
- Minimize sum squared distance of each point to closest center

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Break it down into subproblems

Suppose I tell you the cluster centers c_i

• Q: how to determine which points to associate with each c_i?



Suppose I tell you the points in each cluster

· Q: how to determine the cluster centers?

autrage

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, c₁, ..., c_K
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
- 3. Given points in each cluster, solve for ci
 - $\bullet \quad \text{Set c_i to be the mean of points in cluster i} \\$
- 4. If c_i have changed, repeat Step 2

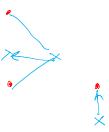
Javascript demo: https://miguelmota.com/blog/k-means-clustering-in-javascript/demo/

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Examples



Cleaning up the result

Problem:

- · Histogram-based segmentation can produce messy regions
 - segments do not have to be connected
 - may contain holes

How can these be fixed?

Dilation operator: $G = H \oplus F$

Assume: binary image

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	0	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

H[u,v]

H[u,v]

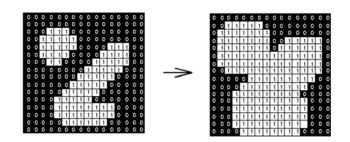
Dilation: does H "overlap" F around [x,y]?

- G[x,y] = 1 if H[u,v] and F[x+u-1,y+v-1] are both 1 somewhere 0 otherwise
- Written $G = H \oplus F$

Dilation operator

Demo

• http://www.cs.bris.ac.uk/~majid/mengine/morph.html



Erosion operator: $G = H \ominus F$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	1	0	1	1	1	0	0
0	0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

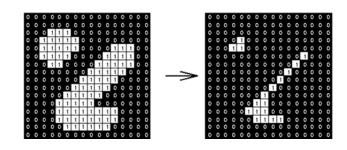
Erosion: is H "contained in" F around [x,y]

- G[x,y] = 1 if F[x+u-1,y+v-1] is 1 everywhere that H[u,v] is 1
 0 otherwise
- Written $G = H \ominus F$

Erosion operator

Demo

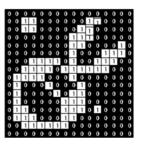
• http://www.cs.bris.ac.uk/~majid/mengine/morph.html



Nested dilations and erosions

What does this operation do?

$$G = H \ominus (H \oplus F)$$

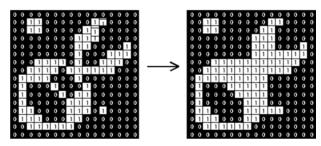


· this is called a closing operation

Nested dilations and erosions

What does this operation do?

$$G = H \ominus (H \oplus F)$$



• this is called a closing operation

Is this the same thing as the following?

$$G = H \oplus (H \ominus F)$$

Nested dilations and erosions

What does this operation do?

$$G = H \oplus (H \ominus F)$$

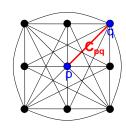
- this is called an **opening** operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions

Dilations, erosions, opening, and closing operations are known as **morphological operations**

• see http://www.dai.ed.ac.uk/HIPR2/morops.htm

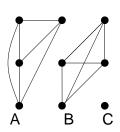
Images as graphs



Fully-connected graph

- · node for every pixel
- link between every pair of pixels, p,q
- cost c_{pg} for each link
 - c_{pq} measures similarity
 - » similarity is inversely proportional to difference in color and position

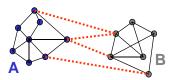
Segmentation by Graph Cuts



Break Graph into Segments

- · Delete links that cross between segments
- Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph



Link Cut

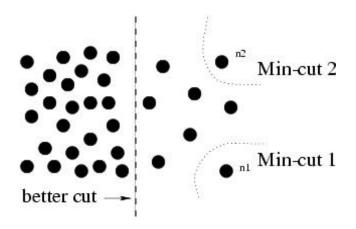
- set of links whose removal makes a graph disconnected
- cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

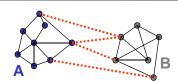
Find minimum cut

- gives you a segmentation
- · fast algorithms exist for doing this

But min cut is not always the best cut...



Cuts in a graph



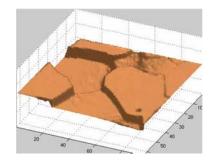
Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)}$$

• volume(A) = sum of costs of all edges that touch A

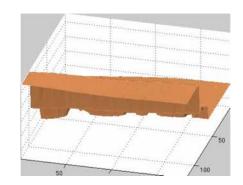
Interpretation as a Dynamical System



Treat the links as springs and shake the system

- · elasticity proportional to cost
- vibration "modes" correspond to segments
 - can compute these by solving an eigenvector problem
 - for more details, see
 - » J. Shi and J. Malik, <u>Normalized Cuts and Image Segmentation</u>, CVPR, 1997

Interpretation as a Dynamical System



Color Image Segmentation

