## Computer Vision (CSE P576)

#### Staff







Prof. Steve Seitz seitz@cs

T.A. Igor Mordatch T.A. Ricardo Martin mordatch@cs

#### Web Page

http://www.cs.washington.edu/education/courses/csep576/15sp/

rmartin@cs@

#### Handouts

• signup sheet

## What is computer vision?

mage recognition image de-restriction self driving rars

## Today

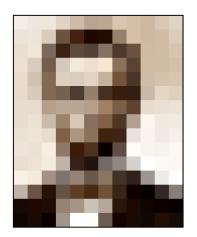
- Intros
- · Computer vision overview
- Course overview
- Image processing
- Features

#### Readings for this week

- Book: Richard Szeliski, Computer Vision: Algorithms and Applications
- Ch 1.0, 3.1-3.2, 4.1

## What is computer vision?




Terminator 2

## Every picture tells a story



Goal of computer vision is to write computer programs that can interpret images

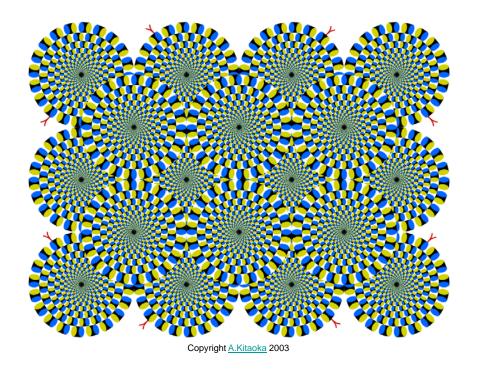
#### What do computers see?



slide by Larry Zitnick

#### Can computers match (or beat) human vision?




Yes and no (but mostly no!)

- humans are much better at "hard" things
- computers can be better at "easy" things

#### Human perception has its shortcomings...



Sinha and Poggio, Nature, 1996



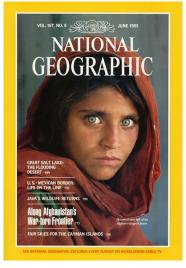
#### Current state of the art

The next slides show some examples of what current vision systems can do

# 3D Maps



## Games



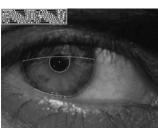

#### Face detection



#### Most digital cameras detect faces

## Face recognition




Who is she?

# Vision-based biometrics



"How the Afghan Girl was Identified by Her Iris Patterns" Read the story





# Object recognition



Google Goggles Bing Vision

#### Special effects: shape capture





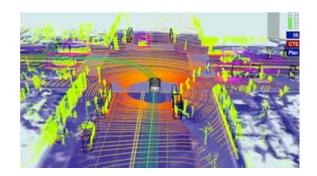
#### Sports



Sportvision first down line Nice <u>explanation</u> on www.howstuffworks.com

The Matrix movies, ESC Entertainment, XYZRGB, NRC

#### Smart cars


#### Slide content courtesy of Amnon Shashua



#### **Mobileye**

• Vision systems currently in high-end BMW, GM, Volvo models

## Self-driving cars



"Our self-driving cars have now traveled nearly 200,000 miles on public highways in California and Nevada, 100 percent safely. They have driven from San Francisco to Los Angeles and around Lake Tahoe, and have even descended crooked Lombard Street in San Francisco. They drive anywhere a car can legally drive."

- Sebastian Thrun, Google

#### **Robotics**



NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit\_rover



http://www.robocup.org/

#### Virtual Reality





Google Cardboard



**Microsoft Hololens** 

#### Current state of the art

You just saw examples of current systems.

• Many of these are less than 5 years old

This is a very active research area, and rapidly changing

• Many new apps in the next 5 years

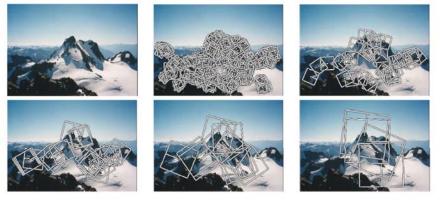
To learn more about vision applications and companies

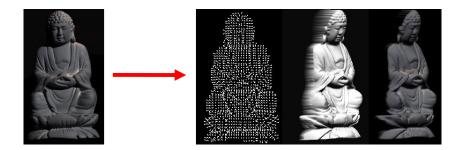
- <u>David Lowe</u> maintains an excellent overview of vision companies
  - http://www.cs.ubc.ca/spider/lowe/vision.html

#### This course

http://www.cs.washington.edu/education/courses/csep576/15sp/

#### Project 1: Features





Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

#### Project 2: Panoramas



Indri Atmosukarto, 576 08sp

# Project 3: 3D Shape Reconstruction



## Project 4: Face Recognition



## Grading

#### Programming Projects (100%)

- features
- panoramas
- 3D shape modeling
- face recognition

# **General Comments**

#### Prerequisites—these are essential!

- Data structures
- A good working knowledge of C and C++ programming
- Linear algebra
- Vector calculus

#### Course does *not* assume prior imaging experience

• computer vision, image processing, graphics, etc.