

High-Quality Video View Interpolation Using a Layered Representation

Larry Zitnick Sing Bing Kang Matt Uyttendaele Simon Winder Rick Szeliski

Interactive Visual Media Group Microsoft Research

Current practice free viewpoint video

Many cameras vs. Motion Jitter

Video view interpolation

Fewer cameras and Smooth Motion

Automatic

Real-time rendering

Prior work: IBR (static) X éh Plenoptic Modeling McMillan & Bishop, SIGGRAPH '95 × Light Field Rendering Levoy & Hanrahan, SIGGRAPH '96 Man Haury 4 3 5 Modifie 10 Concentric Mosaics Shum & He, SIGGRAPH '99 The Lumigraph Gortler *et al.*, SIGGRAPH '96

Prior work: IBR (dynamic)

The second

n

Pol

Dynamic Light Fields Goldlucke *et al.*, VMV '02

Image-Based Visual Hulls Matusik *et al.*, SIGGRAPH '00 Carranza *et al.*, SIGGRAPH '03

3D TV Matusik & Pfister, SIGGRAPH '04

Image correspondence

Local matching

Depth through time

Massive Arabesque