Image Stitching

Computer Vision CSE P 576, Spring 2011 Richard Szeliski Microsoft Research

Today's lecture

Image alignment and stitching

- · motion models
- · image warping
- point-based alignment
- · complete mosaics (global alignment)
- · compositing and blending
- · ghost and parallax removal

Richard Szeliski

Image Stitching

1--

Readings

- · Szeliski, CVAA:
 - · Chapter 3.6: Image warping
 - Chapter 6.1: Feature-based alignment
 - Chapter 9.1: Motion models
 - Chapter 9.2: Global alignment
 - · Chapter 9.3: Compositing
- Recognizing Panoramas, Brown & Lowe, ICCV'2003
- Szeliski & Shum, SIGGRAPH'97

Richard Szeliski Image Stitching

Motion models

Motion models

What happens when we take two images with a camera and try to align them?

- · translation?
- · rotation?
- · scale?
- affine?
- · perspective?

... see interactive demo (VideoMosaic)

Richard Szeliski

Projective transformations

(aka homographies)

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad x' = u/u \\ y' = v/u$$

"keystone" distortions

Image Warping

Image Warping

image filtering: change range of image

image warping: change domain of image

$$g(x) = f(h(x))$$

Richard Szeliski

Image Warping

image filtering: change range of image

g(x) = h(f(x))

image warping: change domain of image

g(x) = f(h(x))

Richard Szeliski

Forward Warping

Send each pixel f(x) to its corresponding location x' = h(x) in g(x')

- · What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Warping Get each pixel g(x') from its corresponding location x' = h(x) in f(x)• What if pixel comes from "between" two pixels? Richard Szeliski Image Stitching 18

Inverse Warping

Get each pixel g(x') from its corresponding location x' = h(x) in f(x)

- · What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

Interpolation

Possible interpolation filters:

- · nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc / FIR

Needed to prevent "jaggies" and "texture crawl" (see demo)

Richard Szeliski

Image Stitching

Motion models (reprise)

Finding the transformation

Translation = 2 degrees of freedom
Similarity = 4 degrees of freedom
Affine = 6 degrees of freedom
Homography = 8 degrees of freedom

How many corresponding points do we need to solve?

CSE 576, Spring 2008 Structure from Motion

Plane perspective mosaics

- 8-parameter generalization of affine motion
 - works for pure rotation or planar surfaces
- · Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively

Richard Szeliski

29

Rotational mosaics

- · Directly optimize rotation and focal length
- Advantages:
 - ability to build full-view panoramas
 - easier to control interactively
 - more stable and accurate estimates

Richard Szeliski

Image Stitching

3D → 2D Perspective Projection

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \begin{bmatrix} \mathbf{R} \end{bmatrix}_{3 \times 3} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \mathbf{t} \qquad \mathbf{u}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

Image Stitching

Richard Szeliski

Rotational mosaic

Projection equations

1. Project from image to 3D ray

 $(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)$

2. Rotate the ray by camera motion

 (x_1,y_1,z_1) = $\mathbf{R}_{01}(x_0,y_0,z_0)$

3. Project back into new (source) image

$$(u_1,v_1) = (fx_1/z_1 + u_c,fy_1/z_1 + v_c)$$

Richard Szeliski

Image Stitching

Image Mosaics (Stitching)

[Szeliski & Shum, SIGGRAPH'97] [Szeliski, FnT CVCG, 2006]

Establishing correspondences

- 1. Direct method:
 - Use generalization of affine motion model [Szeliski & Shum '97]
- 2. Feature-based method
 - Extract features, match, find consisten inliers [Lowe ICCV'99; Schmid ICCV'98, Brown&Lowe ICCV'2003]
 - Compute *R* from correspondences (absolute orientation)

Richard Szeliski

Image Stitching

Stitching demo

Richard Szeliski

Cylindrical panoramas Steps

Reproject each image onto a cylinder

• Blend

· Output the resulting mosaic

Richard Szeliski Image Stitching 42

Extreme "bending" in ultra-wide fields of view

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

 $(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi) = s(x,y,z)$

uations become

$$\begin{array}{rcl} x' & = & s\phi\cos\theta = s\frac{x}{r}\tan^{-1}\frac{r}{z},\\ y' & = & s\phi\sin\theta = s\frac{y}{r}\tan^{-1}\frac{r}{z}, \end{array}$$

Richard Szeliski

Image Stitching

Matching features

Richard Szeliski

Image Stitching

RANSAC loop: 1. Select four feature pairs (at random) 2. Compute homography H (exact) 3. Compute inliers where $||p_i|'$, $H|p_i|| < \varepsilon$ Keep largest set of inliers Re-compute least-squares H estimate using all of the inliers

Structure from Motion

CSE 576, Spring 2008

RANSAC for estimating homography

Assignment 2 – Creating Panoramas

- 1. Implement Harris corner detector
- 2. Implement MatchInterestPoints
- 3. Compute homography using RANSAC
- 4. Compute size of stitched images from projected corners
- 5. Inverse sample image and average

Richard Szeliski Image Stitching

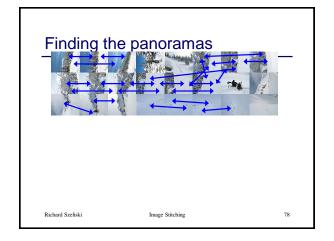
Full-view (360° spherical) panoramas

Texture Mapped Model

Global alignment

- Register all pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- Infer overlaps based on previous matches (incremental)
- Optionally discover which images overlap other images using feature selection (RANSAC)

Richard Szeliski


Image Stitching

- -

Recognizing Panoramas

Matthew Brown & David Lowe ICCV'2003

Rec.pano.: system components

- 1. Feature detection and description
 - · more uniform point density
- 2. Fast matching (hash table)
- 3. RANSAC filtering of matches
- 4. Intensity-based verification
- 5. Incremental bundle adjustment
- [M. Brown, R. Szeliski, and S. Winder. Multi-image matching using multi-scale oriented patches, CVPR'2005]

Richard Szeliski Image Stitching

Multi-Scale Oriented Patches

Interest points

- · Multi-scale Harris corners
- · Orientation from blurred gradient
- · Geometrically invariant to similarity transforms

Descriptor vector

- Bias/gain normalized sampling of local patch (8x8)
- Photometrically invariant to affine changes in intensity

Richard Szeliski Image Stitching 85

How well does this work?

Test on 100s of examples...

How well does this work?

Test on 100s of examples...

...still too many failures (5-10%) for consumer application

How can we fix these?

Tune the feature detector

Tune the feature matcher (cost metric)

Tune the RANSAC stage (motion model)

Tune the verification stage

Use "higher-level" knowledge

- · e.g., typical camera motions
- → Sounds like a big "learning" problem
 - Need a large training/test data set (panoramas)

Richard Szeliski

Richard Szeliski

Image Stitching

Image Blending

Weight each image proportional to its distance from the edge (distance map [Danielsson, CVGIP 1980] 1. Generate weight map for each image 2. Sum up all of the weights and divide by sum: weights sum up to 1: $w_i' = w_i / (\sum_i w_i)$

Image Stitching

Laplacian image blend

- 1. Compute Laplacian pyramid
- 2. Compute Gaussian pyramid on *weight* image (can put this in A channel)
- 3. Blend Laplacians using Gaussian blurred weights
- 4. Reconstruct the final image
- Q: How do we compute the original weights?
- A: For horizontal panorama, use mid-lines
- Q: How about for a general "3D" panorama?

Richard Szeliski

Image Stitching

109

Weight selection (3D panorama)

Idea: use original feather weights to select strongest contributing image

Can be implemented using L- ∞ norm: (p = 10)

 $w_i' = [w_i^p / (\sum_i w_i^p)]^{1/p}$

Richard Szeliski

Image Stitching

24

Poisson Image Editing Lourse Videstriations Lourse Videstriations

Local alignment (deghosting)

Use local optic flow to compensate for small motions [Shum & Szeliski, ICCV'98]

Figure 3: Deghosting a mosaic with motion parallax: (a) with parallax; (b) after single deghosting step (patch size 32); (c) multiple steps (sizes 32, 16 and 8).

Richard Szeliski

Image Stitching

113

111

Local alignment (deghosting)

Use local optic flow to compensate for radial distortion [Shum & Szeliski, ICCV'98]

Figure 4: Deghosting a mosaic with optical distortion: (a) with distortion; (b) after multiple steps.

Richard Szeliski

Image Stitching

Select only one image in regions-of-difference using weighted vertex cover [Uyttendaele et al., CVPR'01]

115

Richard Szeliski

Image Stitching

Region-based de-ghosting

Select only one image in regions-of-difference using weighted vertex cover [Uyttendaele et al., CVPR'01]

Richard Szeliski

Image Stitching

Cutout-based de-ghosting

- Select only one image per output pixel, using spatial continuity
- •Blend across seams using gradient continuity ("Poisson blending")

[Agarwala et al., SG'2004]

Richard Szeliski

Image Stitching

Cutout-based compositing

Photomontage [Agarwala et al., SG'2004]

• Interactively blend different images: group portraits

Richard Szeliski

PhotoMontage

Technical details:

· use Graph Cuts to optimize seam placement

Demo:

 Windows Live Photo Gallery Photo Fuse

Richard Szeliski

Cutout-based compositing

Photomontage [Agarwala et al., SG'2004]

• Interactively blend *different* images: focus settings

Richard Szeliski

maga Stitching

120

Cutout-based compositing

Photomontage [Agarwala et al., SG'2004]

• Interactively blend *different* images: people's faces

Richard Szeliski

Image Stitching

Video stitching

· High dynamic range image stitching

More stitching possibilities

- · see demo...
- Flash + Non-Flash
- · Video-based rendering

Next-next week's lecture:

<u>Computational Photography</u>

Richard Szeliski

121

Image Stitching

Other types of mosaics

Can mosaic onto any surface if you know the geometry

- See NASA's <u>Visible Earth project</u> for some stunning earth mosaics
- http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Richard Szeliski

Image Stitching

123

125

Slit images

y-t slices of the video volume are known as slit images

• take a single column of pixels from each input image

Richard Szeliski Image Stitching 124

Slit images: cyclographs

Richard Szeliski

Image Stitching

Slit images: photofinish

28

