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We live in a moving world 

• Perceiving, understanding and predicting motion is an 
important part of our daily lives 

 

 

 

 

 

 

 
 

Motion estimation: a core problem of 
computer vision 

• Related topics:  
– Image correspondence, image registration, image matching, image 

alignment, … 

• Applications 

– Video enhancement: stabilization, denoising, super resolution 

– 3D reconstruction: structure from motion (SFM) 

– Video segmentation 

– Tracking/recognition 

– Advanced video editing 
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Readings 

• Rick’s book: Chapter 8 

• Ce Liu’s PhD thesis (Appendix A & B) 

• S. Baker and I. Matthews. Lucas-Kanade 20 years on: a 
unifying framework. IJCV 2004  

• Horn-Schunck (wikipedia)  

• A. Bruhn, J. Weickert, C. Schnorr. Lucas/Kanade meets 
Horn/Schunk: combining local and global optical flow 
methods. IJCV 2005  

 

Contents 
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Seeing motion from a static picture? 

http://www.ritsumei.ac.jp/~akitaoka/index-e.html 

More examples 
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How is this possible? 

• The true mechanism is to be 
revealed 

• FMRI data suggest that  illusion 
is related to some component of 
eye movements 

• We don’t expect computer vision 
to “see” motion from these 
stimuli, yet 

What do you see? 

In fact, … The cause of motion 

• Three factors in imaging process 
– Light 

– Object 

– Camera  

• Varying either of them causes motion 
– Static camera, moving objects (surveillance) 

– Moving camera, static scene (3D capture) 

– Moving camera, moving scene (sports, movie) 

– Static camera, moving objects, moving light (time lapse) 
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Motion scenarios (priors) 

Static camera, moving scene Moving camera, static scene 

Moving camera, moving scene Static camera, moving scene, moving light 

We still don’t touch these areas 

Motion analysis: human vs. computer 

• Challenges of motion estimation 
– Geometry: shapeless objects 

– Reflectance: transparency, shadow, reflection 

– Lighting: fast moving light sources 

– Sensor: motion blur, noise 

• Key: motion representation 
– Ideally, solve the inverse rendering problem for a video sequence 

• Intractable! 

– Practically, we make strong assumptions 

• Geometry: rigid or slow deforming objects 

• Reflectance: opaque, Lambertian surface 

• Lighting: fixed or slow changing 

• Sensor: no motion blur, low-noise 
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Parametric motion 

• Mapping: 𝑥1, 𝑦1 → (𝑥2, 𝑦2) 
– (𝑥1, 𝑦1): point in frame 1 

– (𝑥2, 𝑦2): corresponding point in frame 2 

• Global parametric motion: 𝑥2, 𝑦2 = 𝑓(𝑥1, 𝑦1; 𝜃) 

• Forms of parametric motion 

– Translation: 
𝑥2
𝑦2
=
𝑥1 + 𝑎
𝑦1 + 𝑏

 

– Similarity: 
𝑥2
𝑦2
= 𝑠

cos 𝛼 sin 𝛼

− sin 𝛼 cos 𝛼

𝑥1 + 𝑎
𝑦1 + 𝑏

 

– Affine: 
𝑥2
𝑦2
=
𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

 

– Homography: 
𝑥2
𝑦2
=
1

𝑧

𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

, 𝑧 = 𝑔𝑥1 + 𝑕𝑦1 + 𝑖 

Parametric motion forms 

Translation 

Homography 

Optical flow field 

• Parametric motion is limited and cannot describe the 
motion of arbitrary videos 

• Optical flow field: assign a flow vector 𝑢 𝑥, 𝑦 , 𝑣 𝑥, 𝑦  to 

each pixel (𝑥, 𝑦) 

• Projection from 3D world to 2D 

Optical flow field visualization 

• Too messy to plot flow vector for every pixel 

• Map flow vectors to color 

– Magnitude: saturation 

– Orientation: hue 

Ground-truth flow field Visualization code 

[Baker et al. 2007] 

Input two frames  
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Matching criterion 

• Brightness constancy assumption 

 𝐼1 𝑥, 𝑦 = 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 + 𝑛 

 𝑛 ∼ 𝑁 0, 𝜎2   

• Noise 𝑛 

• Matching criteria 
– What’s invariant between two images? 

• Brightness, gradients, phase, other features… 

– Distance metric (L2, robust functions) 

     𝐸 𝑢, 𝑣 =  𝐼1 𝑥, 𝑦 − 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣
2

𝑥,𝑦  

– Correlation, normalized cross correlation (NCC) 
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Problem definition:  optical flow 

How to estimate pixel motion from image H to image I? 

• Solve pixel correspondence problem 

– given a pixel in H, look for nearby pixels of the same color in I 

Key assumptions 

• color constancy:  a point in H looks the same in I 

– For grayscale images, this is brightness constancy 

• small motion:  points do not move very far 

This is called the optical flow problem 

Optical flow constraints (grayscale images) 

Let’s look at these constraints more closely 

• brightness constancy:   Q:  what’s the equation? 

• small motion:  (u and v are less than 1 pixel) 

– suppose we take the Taylor series expansion of I: 
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Optical flow equation 

Combining these two equations 

Optical flow equation 

Combining these two equations 

In the limit as u and v go to zero, this becomes exact 

 

Lucas-Kanade flow 

How to get more equations for a pixel? 

• Basic idea:  impose additional constraints 

– most common is to assume that the flow field is smooth locally 

– one method:  pretend the pixel’s neighbors have the same (u,v) 

» If we use a 5x5 window, that gives us 25 equations per pixel! 

RGB version 

How to get more equations for a pixel? 

• Basic idea:  impose additional constraints 

– most common is to assume that the flow field is smooth locally 

– one method:  pretend the pixel’s neighbors have the same (u,v) 

» If we use a 5x5 window, that gives us 25*3 equations per pixel! 
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Lucas-Kanade flow 

Prob:  we have more equations than unknowns 

• The summations are over all pixels in the K x K window 

• This technique was first proposed by Lucas & Kanade (1981) 

Solution:  solve least squares problem 

• minimum least squares solution given by solution (in d) of: 

Conditions for solvability 

• Optimal (u, v) satisfies Lucas-Kanade equation 

When is This Solvable? 
• ATA should be invertible  

• ATA should not be too small due to noise 

– eigenvalues l1 and l2 of ATA should not be too small 

• ATA should be well-conditioned 

–   l1/ l2 should not be too large (l1 = larger eigenvalue) 

 

Does this look familiar? 
• ATA is the Harris matrix 

Observation 

This is a two image problem BUT 
• Can measure sensitivity by just looking at one of the images! 

• This tells us which pixels are easy to track, which are hard 

– very useful for feature tracking... 

Errors in Lucas-Kanade 

What are the potential causes of errors in this procedure? 

• Suppose ATA is easily invertible 

• Suppose there is not much noise in the image 

 When our assumptions are violated 

• Brightness constancy is not satisfied 

• The motion is not small 

• A point does not move like its neighbors 

– window size is too large 

– what is the ideal window size? 
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• Can solve using Newton’s method 

– Also known as Newton-Raphson method 

– For more on Newton-Raphson, see (first four pages) 

» http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf 

• Lucas-Kanade method does one iteration of Newton’s method 

– Better results are obtained via more iterations 

 

Improving accuracy 

Recall our small motion assumption 

This is not exact 

• To do better, we need to add higher order terms back in: 

This is a polynomial root finding problem 

1D case 

on board 

Iterative Refinement 

Iterative Lucas-Kanade Algorithm 
1. Estimate velocity at each pixel by solving Lucas-Kanade equations 

2. Warp H towards I using the estimated flow field 

- use image warping techniques 

3. Repeat until convergence 

Coarse-to-fine refinement 

• Lucas-Kanade is a greedy algorithm that converges to local 
minimum  

• Initialization is crucial: if initialized with zero, then the 
underlying motion must be small  

• If underlying transform is significant, then coarse-to-fine is 
a must  

 

Smooth & 
down-
sampling 

(𝑢2, 𝑣2) 

(𝑢1, 𝑣1) 

(𝑢, 𝑣) 

× 2 

× 2 

Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Coarse-to-fine LK  Input two frames  

http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
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Motion ambiguities 

• When will the Lucas-Kanade algorithm fail? 

𝑑𝑢
𝑑𝑣
= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

 

 

• The inverse may not exist!!! 

• How? 
– All the derivatives are zero: flat regions 

– X- and y-derivatives are linearly correlated: lines 

Aperture problem 

Corners Lines Flat regions 

Aperture problem 

http://www.123opticalillusions.com/pages/barber_pole.php  

http://www.123opticalillusions.com/pages/barber_pole.php
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Dense optical flow with spatial regularity 

• Local motion is inherently ambiguous 
– Corners: definite, no ambiguity (but can be misleading) 

– Lines: definite along the normal, ambiguous along the tangent  

– Flat regions: totally ambiguous  

• Solution: imposing spatial smoothness to the flow field  
– Adjacent pixels should move together as much as possible  

• Horn & Schunck equation 

𝑢, 𝑣 = argmin 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

– 𝛻𝑢 2 =
𝜕𝑢

𝜕𝑥

2
+
𝜕𝑢

𝜕𝑦

2
= 𝑢𝑥
2 + 𝑢𝑦

2  

– 𝛼: smoothness coefficient 

Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Coarse-to-fine LK  

Input two frames  

Horn-Schunck 

Continuous Markov Random Fields  

• Horn-Schunck started 30 years of research on continuous 
Markov random fields  
– Optical flow estimation  

– Image reconstruction, e.g. denoising, super resolution  

– Shape from shading, inverse rendering problems  

– Natural image priors  

• Why continuous? 
– Image signals are differentiable 

– More complicated spatial relationships  

• Fast solvers 
– Multi-grid 

– Preconditioned conjugate gradient 

– FFT + annealing 
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Spatial regularity 

• Horn-Schunck is a Gaussian Markov 
random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Spatial over-smoothness is caused by the 
quadratic smoothness term 

• Nevertheless, real optical flow fields are 
sparse! 

𝑢 𝑢𝑥 𝑢𝑦  

𝑣 𝑣𝑥 𝑣𝑦  

Data term 

• Horn-Schunck is a Gaussian Markov random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Quadratic data term implies Gaussian white noise 

• Nevertheless, the difference between two corresponded 
pixels is caused by 
– Noise (majority) 

– Occlusion 

– Compression error 

– Lighting change 

– … 

• The error function needs to account for these factors 

 

Typical error functions 
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L2 norm 
𝜌 𝑧 = 𝑧2 

L1 norm 
𝜌 𝑧 = |𝑧| 

Truncated L1 norm 
𝜌 𝑧 = min ( 𝑧 , 𝜂) 

Lorentzian 
𝜌 𝑧 = log (1 + 𝛾𝑧2) 

Robust statistics 

• Traditional L2 norm: only noise, no outlier 

• Example: estimate the average of 
                     0.95, 1.04, 0.91, 1.02, 1.10, 20.01 

• Estimate with minimum error 

 𝑧∗ = argmin
𝑧
 𝜌 𝑧 − 𝑧𝑖𝑖  

– L2 norm: 𝑧∗ = 4.172 

– L1 norm: 𝑧∗ = 1.038 

– Truncated L1: 𝑧∗ = 1.0296 

– Lorentzian: 𝑧∗ = 1.0147 
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𝜌 𝑧 = min ( 𝑧 , 𝜂) 
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The family of robust power functions 

• Can we directly use L1 norm 𝜓 𝑧 = 𝑧 ? 
– Derivative is not continuous 

• Alternative forms 

– L1 norm: 𝜓 𝑧2 = 𝑧2 + 𝜀2 

– Sub L1: 𝜓 𝑧2; 𝜂 = 𝑧2 + 𝜀2 𝜂 , 𝜂 < 0.5 
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𝜂 = 0.2 

Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Input two frames  

Horn-Schunck 

Robust optical flow 

Layer representation 

• Optical flow field is able to model 
complicated motion  

• Different angle: a video sequence 
can be a composite of several 
moving layers  

• Layers have been widely used  

– Adobe Photoshop 

– Adobe After Effect 

• Compositing is straightforward, 
but inference is hard 

Wang & Adelson, 1994  

55 

Wang & Adelson, 1994 

• Strategy 
– Obtaining dense optical flow field  

– Divide a frame into non-overlapping regions and fit affine motion 
for each region  

– Cluster affine motions by k-means clustering  

– Region assignment by hypothesis testing  

– Region splitter: disconnected regions are separated  

 

56 
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Results 

Optical flow field Clustering to affine regions Clustering with error metric 

Three layers with affine motion superimposed 

Reconstructed background layer 

Flower garden 

57 
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Video stabilization Video denoising 
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Video super resolution 
Summary 

• Lucas-Kanade 
– Parametric motion 

– Dense flow field (with median filtering) 

• Horn-Schunck 
– Gaussian Markov random field 

– Euler-Lagrange 

• Robust flow estimation 
– Robust function 

• Account for outliers in the data term 

• Encourage piecewise smoothness 


