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We live in a moving world

* Perceiving, understanding and predicting motion is an
important part of our daily lives

Motion Estimation (1)

Ce Liu
celiu@microsoft.com
Microsoft Research New England

Motion estimation: a core problem of

s Contents (today)
computer vision
* Related topics: Motion perception
— Image correspondence, image registration, image matching, image

alignment, ... Motion representation

* Applications Parametric motion: Lucas-Kanade

— Video enhancement: stabilization, denoising, super resolution .
) N OISINg, Sup Dense optical flow: Horn-Schunck
— 3D reconstruction: structure from motion (SFM)

— Video segmentation Robust estimation
— Tracking/recognition
Advanced video editing Applications (1)




5/9/2011

Readings Contents

Rick’s book: Chapter 8 « Motion perception
Ce Liu’s PhD thesis (Appendix A & B)

S. Baker and I. Matthews. Lucas-Kanade 20 years on: a
unifying framework. IJCV 2004

Horn-Schunck (wikipedia)

A. Bruhn, ]. Weickert, C. Schnorr. Lucas/Kanade meets
Horn/Schunk: combining local and global optical flow
methods. [JCV 2005

Seeing motion from a static picture? More examples
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http://www.ritsumei.ac.jp/~akitaoka/index-ehtml
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How is this possible? | i What do you see?

The true mechanism is to be
revealed

FMRI data suggest that illus
is related to some component of
eye movements

We don’t expect computer vision
to “see” motion from these
stimuli, yet

In fact, ... The cause of motion

* Three factors in imaging process
— Light
— Object
— Camera
* Varying either of them causes motion
— Static camera, moving objects (surveillance)
— Moving camera, static scene (3D capture)
— Moving camera, moving scene (sports, movie)
Static camera, moving objects, moving light (time lapse)
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Motion scenarios (priors) We still don’t touch these areas

%
ore

Moving camera, stati:

Motion analysis: human vs. computer

Challenges of motion estimati

— Geometry: shapeless objects

— Reflectance: transparency, shadow, reflection * Motion rep
— Lighting: fast moving light sources

— Sensor: motion blur, noise

Key: motion representation

— Ideally, solve the inverse rendering problem for a video sequence

* Lighting: fixed or slow changing

* Sensor: no motion blur, low-noise
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Parametric motion Parametric motion forms

Mapping: (x1,y1) = (xX2,¥2)

— (x1,¥1): point in frame 1

— (x3,¥): corresponding point in frame 2

Global parametric motion: (x,,y,) = f(x1,¥1;6)

Forms of parametric motion

. X1 ta — Homography
Translation: |, °| = [V + b]
7 V1
AP X2] _ cos(a) sin(ar)] [xl +a
SLoiEsity [.Vz] =S [— sin(a) cos(a)lly1 +b

Translation
xz] ax, + by, + c]

Y2l 7 ldx, + ey, + f

X 1[ax; + by, + ¢
Homography: [ ] = dxi + eyi +f

Affine:

Y2

],Z:gxl +hy; +i

Optical flow field Optical flow field visualization

Parametric motion is limited and cannot describe the

* Too messy to plot flow vector for every pixel
motion of arbitrary videos

* Map flow vectors to color

Optical flow field: assign a flow vector (u(x, v),v(x, y)) to — Magnitude: saturation

each pixel (x,
pixel (x,y) — Orientation: hue

Ontic flow s s
(20 representation) %
g
: : g i ﬂ
—

Projection from 3D world to 2D

Elevation (°)

M"ﬁ“h " Input two frames Ground-truth flow field Visualization code
[Baker et al. 2007]




Matching criterion

Brightness constancy assumption
Ly =hLx+uy+v)+n
n ~ N(0,0%)
Noisen
Matching criteria
— What's invariant between two images?
* Brightness, gradients, phase, other features...
— Distance metric (L2, robust functions)
E@,v) = ¥ry(h(6,y) = L(x +u,y +v))?
— Correlation, normalized cross correlation (NCC)

Contents

Parametric motion: Lucas-Kanade
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Problem definition: optical flow

./ \ o
- .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?
« Solve pixel correspondence problem
— given a pixel in H, \oukforpixels of Ihe inl
Key assumptions
« color constancy: a point in H looks the same in |
— For grayscale images, this is brightness constancy
« small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

() ‘
wlsp\acement = (u,v) o
(24 u,y+v)
H(z,y) I(z,y)

Let’s look at these constraints more closely
+ brightness constancy: Q: what'’s the equation?

» small motion: (u and v are less than 1 pixel)

— suppose we take the Taylor series expansion of I:
I(z4u, y+v) = I(z, y)—{-%{_u-}-%n—{-higher order terms

~ I(z,y) + %I,u + %v




Optical flow equation
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Combining these two equations

shorthand: I,

— al
= dx

Optical flow equation

Combining these two equations
0=1I(z+uy+v)— H(z,y)
~ I(w,y) + Lew+ Iy — H(w,y)
= (I(z,y) — H(z, y)) + Lu+ Iyv
= I+ Ipu+ Tyv
~ I+ VI [uv)

shorthand: I, =

In the limit as u and v go to zero, this becomes exact
Y 0
0=1I+ VI [Z %

Al
= dx

Lucas-Kanade flow

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0= 5(py) + VI(py) - [u v]

I:(p1)[0]  Iy(p1)[O] Ii(p1)[0]
L:(p1)  Iy(p1) Ii(p1) I(pO[]  I(poI1] n(p1)[1]
Lx(p2)  ILy(p2) | | u I(p2) L(p)[2]  Iy(p)[2] [} T(p1)[2]
i i v i ; : == H
Le(pas) Iy(p2s) Ie(p2s) L(p2s)[0] Ly(p2s)[o] | L " Li(pas)[0]
a R Ie(p2s)[1] Iy(pas)[1] Li(pas)[1]
EIoeve) %1 95x1 1:(pas)[2] 1.&#(1’25)[2] I(p2s)[2]
A d b
T5x2 2% 1 75x1

RGB version

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel’s neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0= I;(p[0,1,2] + VI(p)[0,1,2] - [u v]
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Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad—b|]?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) a= ATy

2x2 2x1 2x1

ZI.)II.T ZI.TI}} w_ EI.]‘[L
S lely Y Iyly v| > Iyl

AT 4 ATy

» The summations are over all pixels in the K x K window
+ This technique was first proposed by Lucas & Kanade (1981)

Conditions for solvability

+ Optimal (u, v) satisfies Lucas-Kanade equation

[EI?ZI.?" E[rfg} ['tt} _ [ ZIJ?L!]
Yhly oy ||v]| ™ Tyl

AT A ATy

When is This Solvable?
+ ATA should be invertible
+ ATA should not be too small due to noise
— eigenvalues 2, and %, of ATA should not be too small
+ ATA should be well-conditioned
— A/ &, should not be too large (1, = larger eigenvalue)

Does this look familiar?
« ATA is the Harris matrix

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!
« This tells us which pixels are easy to track, which are hard
— very useful for feature tracking...

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

» Suppose ATA is easily invertible
» Suppose there is not much noise in the image

When our assumptions are violated
+ Brightness constancy is not satisfied
+ The motion is not small
» A point does not move like its neighbors
— window size is too large
— what is the ideal window size?
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Improving accuracy

Recall our small motion assumption
0=1I(z+uy+v)— H(z,y)
~ I(x,y) + Lyu + Iy — H(x,y)

This is not exact
« To do better, we need to add higher order terms back in:

= ](;L‘. y) + L,;'u, + Iy'U + higher order terms — H(.I?A y)
This is a polynomial root finding problem

+ Can solve using Newton’s method 1D case
— Also known as Newton-Raphson method on board
— For more on Newton-Raphson, see (first four pages)
»  http:/A ulib.c umerical ID¢ C 4.pdf

* Lucas-Kanade method does one iteration of Newton’s method
— Better results are obtained via more iterations

Iterative Refinement

Iterative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Coarse-to-fine refinement

Lucas-Kanade is a greedy algorithm that converges to local
minimum

Initialization is crucial: if initialized with zero, then the
underlying motion must be small

If underlying transform is significant, then coarse-to-fine is
a must

Smooth &
down-
sampling

Example

-

Input two frames

Coarse-to-fine LK with median filtering



http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf

Contents

* Dense optical flow: Horn-Schunck

Aperture problem

Flat regions

Motion ambiguities

* When will the Lucas-Kanade algorithm fail?

-1
du] _ 3L, I;Iy 1
l) IV

dv 171, 171,

» The inverse may not exist!!!
* How?
— All the derivatives are zero: flat regions
— X- and y-derivatives are linearly correlated: /ines

5/9/2011

Aperture problem

\
AN\

http://www.123opticalillusions.com/pages/barber_pole.php

10


http://www.123opticalillusions.com/pages/barber_pole.php
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Dense optical flow with spatial regularity Example

Local motion is inherently ambiguous
— Corners: definite, no ambiguity (but can be misleading)
— Lines: definite along the normal, ambiguous along the tangent
— Flat regions: totally ambiguous

Solution: imposing spatial smoothness to the flow field
— Adjacent pixels should move together as much as possible

Horn & Schunck equation

(w,v) = argmin ﬁ-(lxu + v+ I,)2 + a(|Vu|? + |Vv|?)dxdy

> au\2 | (ou)\? 2 2
— |vul (dx) + (ay) =uz +ujy
— a: smoothness coefficient N

Coarse-to-fine LK with median filtering

Continuous Markov Random Fields Contents

Horn-Schunck started 30 years of research on continuous
Markov random fields

Optical flow estimation
Image reconstruction, e.g. denoising, super resolut
Shape from shading, inverse rendering problems
Natural image priors
Why continuous? ) J * Robust estimation
— Image signals are differentiable 3 :
— More complicated spatial relati
Fast solvers
— Multi-grid
— Preconditioned conjugate gradient
— FFT + annealing

11



Spatial regularity

Horn-Schunck is a Gaussian Markov
random field (GMRF)

ff(lxlt +Lv+ I,‘)z + a(|Vul? + |Vv|?)dxdy

Spatial over-smoothness is caused by the
quadratic smoothness term
Nevertheless, real optical flow fields are
sparse!

Typical error functions

Truncated L1 norm
p(2) = min(lzl,n)

L1 norm
p(2) = |z|
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Data term

Horn-Schunck is a Gaussian Markov random field (GMRF)

2 2 5
(Leu+ Ly +1,)" + a([Vul? + |Vv|?)dxdy

Quadratic data term implies Gaussian white noise

Nevertheless, the difference between two corresponded
pixels is caused by ¥

— Noise (majority)

— Occlusion

— Compression error

— Lighting change

The error function needs to account for these factors

Robust statistics

Traditional L2 norm: only noise, no outlier

Example: estimate the average of
0.95,1.04,0.91,1.02,1.10, 20.01
Estimate with minimum error
z* =arg mzin Yip(z—1z)
L2 norm: z* = 4.172
L1 norm: z* = 1.038
Truncated L1: z* = 1.0296

Lorentzian: z* = 1.0147

12
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The family of robust power functions Example :
+ Can we directly use L1 norm ¢(z) = |z|? X |-
— Derivative is not continuous o i et

. Robust optical flow
 Alternative forms -

— L1 norm: §(z?%) = Vz2 + £2 e
— SubL1:9(z%n) = (22 + 21,7 < 0.5 —

Input two frames

-

Coars -fine LK with median filtering

Layer representation Wang & Adelson, 1994

* Strategy
— Obtaining dense optical flow field

Optical flow field is able to model

complicated motion > e
Divide a frame into non-overlapping regions and fit affine motion

Different angle: a video sequence L for each region
can be a composite of several e Cluster affine motions by k-means clustering
moving layers . Region assignment by hypothesis testing

Region splitter: disconnected regions are separated
Layers have been widely used

— Adobe Photoshop

image

final
— Adobe After Effect seience segmentation
Compositing is straightforward, oo Tagon Togion

goncrator et -—‘ Shiier

butinference is hard

13



Results

Video stabilization

Contents

* Applications (1)

Video denoising

5/9/2011
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Summary

Video super resolution

* Lucas-Kanade
Low:Res — Parametric motion
— Dense flow field (with median filtering)
* Horn-Schunck
— Gaussian Markov random field
— Euler-Lagrange
* Robust flow estimati
— Robust function
« Account for outliers in the data term
« Encourage piecewise smoothness
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