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@ Low-level features - mid-level features - high-level features - categories
@ Representations are increasingly abstract, global, and invariant.
@ In Vision: part-whole hierarchy
» Pixels->Edges->Textons->Parts->0bjects->Scenes
@ In Language: hierarchy in syntax and semantics

» Words->Parts of Speech->Sentences->Text
» Objects,Actions,Attributes...-> Phrases -> Statements -> Stories
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Old Idea for Image Representation witl

@ [Hubel & Wiesel 1962]:
¥ simple cells detect local features

» complex cells "pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”

“Complex cells”

pooling subsampling

Multiple

convolutions ‘\ /

Retinotopic Feature Maps
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@@ Convolutional net for handwriting recognition (400.000 synapses)
@ Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.
@ Supervised gradient-descent learning using back-propagation . . .-.. .
@ The entire network is trained end-to-end. All the layers are trained simultancously. =- l=.l==.=====
i — R NA«ENSd SSuR=DNS S
Handw Some Results on MNIST (from raw
CLASSIFER DEFORMATION ~ ERROR  Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)
Fes /79664 010/0|00|0|0|6| e ? 2-iayer NN, 800 HU, CE 160  Simard etal, ICDAR 2003
é & VDD DD D 3layer NN, 5004300 HU, CE, reg 153 Hinton, in press, 2005
7 s 7 4 345 Z“j][ 2 J 2 SVM, Gaussian Kemnel 140  Cortes 92 + Many others
RIT9n/1av¥6 ks a|a|R a|R
wgigoilgvsou 33330535355 Convolutional nets
Z L ¥ 4475 4 0 v 9y "I Convolutional net LeNet-5, 080  Ranzato et al. NIPS 2006
% ) ylylvllgly 4 Convolutional net LeNet-6, 070 Ranzato et al. NIPS 2006
7589265 %1 99 [sJs][SIs|s|Ss]s]S]s B— R
raining set augmented ine Distortions
2222434450 ARARANANAAANL 2-ayer NN, 800 HU, CE Affine 110  Simard et al, ICDAR 2003
a3 07357 777?777777 Virtual SVM deg-9 poly Affine 080  Scholkopf
Convolutional net, CE Affine 060  Simardetal, ICDAR 2003
Ol abdqb ‘72‘,(5 BEAEERERRG Training et augmented with Elastic Distortions
772810649806/ qlalale]alalqlalala 2-layer NN, 800 HU, CE Elastic 070  Simard etal, ICDAR 2003
Convolutional net, CE Elastic 040  Simard et al,, ICDAR 2003
@ Handwritten Digit Dataset MN 60.000 tray samples, 10,000 test samples Note: some groups have obtained good results with various amounts of preprocessing
such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf])
hand-designed feature representations (e.g. 0.63% with “shape context™ and nearest neighbor [Belongie]
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Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories

To appear in CVPR 2006
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1 Szummer & Picard (1997) SIFT: Lowe (1999, 2004) Gist: Torralba et al. (2003) 2

Overview

* A “pre-attentive” approach: recognize the scene as a whole without examining
its constituent objects Biederman (1988), Thorpe et al. (1996). Fel-Fel et al. (2002), Renninger & Mallk (2004)

+ Inspiration: locally orderless images Koenderink & van Doom (1999)

Mgt Mg

+ Previous work: “subdivide-and-disorder” strategy

Spatial pyramid representation

+ Extension of a bag of features

« Locally orderless representation at several levels of resolution

+ Based on pyramid match kernels Grauman & Dareil (2005)
— Grauman & Darrell: build pyramid in feature space, discard spatial information
~ Our approach: build pyramid in image space, quantize feature space

]I

Feature extraction

Weak features Strong features

Edge points at 2 scales and 8 orientations  SIFT descriptors of 16x16 patches sampled
(vocabulary size 16) on a regular grid, quantized to form visual
vocabulary (size 200, 400)
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Support Vector
Machines

Modified from the slides by Dr. Andrew W. Moore
http://www.cs.cmu.edu/~awm/tutorials

Copyright © 2001, 2003, Andrew W. Moore Nov 23rd, 2001

Linear Classifiers 1

fix,w,b) = sign(w. x - b)
° denotes +1

° denotes -1

.. L e ) How would you
B : classify this data?

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 14

Linear Classifiers 1

fix,w,b) = sign(w. x - b)
* denotes +1

° denotes -1 .
. A ’ How would you
J > classify this data?

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 15

Linear Classifiers 1

fix,w,b) = sign(w. x - b)
° denotes +1

° denotes -1 .
L o : How would you
o ° > classify this data?

Copyright © 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 16



http://www.cs.cmu.edu/~awm/tutorials

5/23/2011

Linear Classifiers 1
X-

fix,w,b) = sign(w. x - b)
* denotes +1

° denotes -1

How would you
classify this data?

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 17

Linear Classifiers 1
X-

° denotes +1

° denotes -1

o w,b) = sign(w. x - b)

Any of these
would be fine..

°o ..but which is
best?

Copyright © 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 18

Classifier Margin i

fix,w,b) = sign(w. x - b)

¢ denotes +1
Define the margin
of a linear

= classifier as the
width that the
boundary could be
increased by

o0 before hitting a

datapoint.

° denotes -1

Copyright © 2001, 2003, Andrew W. Modre Support Vector Machines: Slide 19

Maximum Margin i

° denotes +1
° denotes -1

fix,w,b) = sign(w. x - b)

The maximum
margin linear
- . ° classifier is the
o ° linear classifier
with the, um,
o maximum margin.

This is the
o e simplest kind of

Copyright © 2001, 2003, Andrew W. Moore

SVM (Called an

HY

Support Vector Machines: Slide 20
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Maximum Margin |
X-

fix,w,b) = sign(w. x - b)
* denotes +1
The maximum
margin linear

- classifier is the
linear classifier
with the, um,
maximum margin.

° denotes -1

Support Vectors?J}
are those
datapoints that

ther:n argin This is the
pushes up . L
against simplest kind of

SVM (Called an

LV

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 21

Why Maximum Margin?

1. [Intuitively this feels safest.
« denotes +1 2. If we've made a small error in the
enotes . location of the boundary (it's been
° denotes -1 . . jolted in its perpendicular direction)
° this gives us least chance of causing a
1 - : misclassification.
., * ° _4|3. LOOCV is easy since the model is
Support Vectors 7 o[~ *—"3 immune to removal of any non-
gre those . ° support-vector datapoints.
atapoints that 1
the n?]argin 4. There's some theory (using VC
pushes up o o dimension) that is related to (but not
against the same as) the proposition that this
is a good thing.
5. Empirically it works very very well.

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 22

Nonlinear Kernel (I)

Example: SVM with Polynomial of Degree 2

Kernel: K(},},) =% -,\*,+ |]z

plot by Bell SVM applet

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 23

Nonlinear Kernel (II)

Example: SVM with RBF-Kernel

" L)
Kernel: k}.2) = exp(3-3|*/0?) plot by Bell SVM applet

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 24
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Multi-class classification results (100 training images per class)

Scene category dataset
Fel-Fel & Perona (2005), Oliva & Torraiba (2001)
http: //www-cvr.ai.uiuc.edu/ponce_grp/data

Exnind ] it B

kitchen living room

open conntry

ighway

Caltech101 dataset
Fei-Fei ot al. (2004)
http://www.vision. caltech.edu/Image Datasets/Caltechl01/CaltechlOl. html

Multi-class classification results (30 training images per class)

Weak features Strong features
(vocabulary size: 16) (vocabulary size: 200) Weak features (16) Strong features (200)
Level Single-level ~ Pyramid | Single-level ~ Pyramid Level || Single-level  Pyramid | Single-level  Pyramid
0(1x1) 453 £0.5 72.2 +0.6 0 155 +0.9 412 +1.2
1(2x2) 53.6+0.3 562+0.6 | 77.94+0.6  79.0+0.5 1 314412 328413 | 559409 57.040.8
2(4x4) 61.7 0.6  64.7+0.7 | 794 +0.3  81.1 +0.3 2 472 +1.1 493414 | 63.6+0.9 64.6+08
3(8x8) 63.3 +0.8 66.8 0.6 772 +0.4 80.7 +0.3 3 522 +0.8 54.0 +1.1 60.3 +0.9 64.6 +0.7
Fei-Fei & Perona: 65.2% & o
(2)2TD (&) (35) (M) (L e/ /wwww.vision caltech edu/image_Datasets/Cakiech1017 72 v )+ (Gl Google
Most Visited ~  Getting Started  Latest Headlines 3 Coogle Apple Yahoo! YouTube Wikipedia News = Popular =  Google Maps  Elsevier Edif
Caltech 101 Caltech-101: Drawbacks
* Smallest category size is 31 images: N <30

%% Caltech256 €9

[Description ][ Download ][ Discussion [Other Datasets]

=0% Se LI

Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images.
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc ‘Aurelio Ranzato. The size of each image is roughly 30
pixels.

We have carefully clicked outlines of each object in these pictures, these are included under the ‘Annotations tar’. There is also
matiab script to view the annotaitons, ‘show_annotations.m'.

=

* Too easy?
— left-right aligned

— Rotation artifacts

train

—Soon will saturate performance




Antonio Torralba generated these average images of the Caltech 101 categories

5/23/2011

Performance (%)

Caltech-101 / Caltech-256 Performance

Nlrain

Caltech-101
—+e= Zhang, Berg, Maire & Mallk (CVPROB)
—+e="* Griffin, Holub & Perona (Tech Rep. 2008)
~ = Lazebnik, Schmid & Ponce (GVPR 0B)

— e~ \Wang, Zhang & Fel-Fei (CVPROE)

= e Graumen & Darrell (IGCVDS5)

~ e Much and Lowe (CVPROE)

Caltech-256
—=— Giiffin, Holub & Perona (Tech Rep. 2006)

* Jump to Nicolas Pinto’s slides. (page 29)

MIT 6.870 Object Recognition and Scene Understanding
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Papers

* A. Torralba. Contextual priming for object detection.
1JCV 2003.

* A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora
and S. Belongie. Objects in Context. ICCV 2007

Object Detection

Probabilistic Framework
Object

presence at
a particular '\P%() |V) — P(V‘ 0) P(O) (Single Object

location/scal Likelihood)
. P(v)

Given all image
features
(local/object and
scene/context)

V = Viocal T Veontextual

Contextual Reasoning

e N

2D Reasoning 2,5D/3D
Reasoning

Scene Centered Object Centered Surface orientations w.r.t. camera

Contextual priming for Obiects in Context Geometric context

object detection from a single image.

Preview: Contextual Priming for Object
Detection

Input test image
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Preview: Contextual Priming for Object
Detection

Correlate with
many filters

Preview: Contextual Priming for Object
Detection

Using previously
collected statistics
about filter output
predict information
about objects

Preview: Contextual Priming for Object
Detection

- Predict information about
- objects
H

people
chair car

Where | can find the Which objects do |

objects easily? expect to see?

How large objects do |
expect to see? 39

Contextual Priming for Object Detection:
Probabilistic Framework

P(O,v) . P(vy, |O.V(_‘)
P(v)  P(vi|ve)

P(O[v) = P(O|vc)

Local measurements
(a lot in the literature)

Contextual features

10
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Contextual Priming for Object Detection:
Contextual Features

N
. Use PCA on filter
S

output images to
reduce the
number of
features (< 64)

Gabor filters at
4 scales and
6 orientations

Use Mixture of Gaussians to model the probabilities. (Other alternatives
include KNN, parzen window, logistic regression, etc)

Contextual Priming for Object Detection: Object
Priming Results

MR BN

1:2:3 4

I &l
o =1

(0, =people, o, =furniture, o, =vehicles and o, =trees

Contextual Priming for Object Detection: FOCUS of
Attention Results

e L

Heads a3

Contextual Priming for Object Detection:
Conclusions

* Proves the relation btw low level features and
scene/context

* Can be seen as a computational evidence for
the (possible) existence of low-level feature
based biological attention mechanisms

* Also a warning: Whether an object recognition
system understands the object or works by
lots bg features.

11
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Preview: Objects in Context

Input test image

Preview: Objects in Context

Do segmentation on the image

Preview: Objects in Context

Road
Building, 2

boat, motorbike

Do classification (find label
probabilities) in each segment
only with local info 47

Preview: Objects in Context

Building

Road
Building, R

boat, motorbike

Most consistent labeling according to object co-
occurrences & local label probabilities.

12
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Objects in Context: Objects in Context:
Local Categorization Contextual Refinement
Building, boat, person * Extract random patches on zero-padded Building Contextual model based on co-occurrences
segments Try to find the most consistent labeling with
o Road e Calculate SIFT descriptors ! = high posterior probability and high mean
Bu”dmg' airwise interaction
boat, motorbike i for thi ,
5 « Use BoF: Use CRF for this purpose.
Training:
- Cluster patches in training (Hier. K-means, k
K=10x3) 5
- Histogram of words in each segment ( N . ‘S S ) o Bgﬂl .. Ck) Hi:l A(%)
- NN classifier (returns a sorted list of categories) plcL...Cplor ... o) = 7 g g
(¢,51...5¢)
Each segment is classified independently
%
Bier e =esn (3 e ) A(2) = p(ci|Sy)
= Independent

Mean interaction of all label pairs
@(i,j) is basically the observed label co-
occurrences in training set.

segment classification

Objects in Context:

R Objects in Context:
Learning Context

Results
Using labeled image datasets (MSRC, PASCAL) | | No Context | Google Sets [ Using Training |
MSRC 45.0% 58.1% 68.4%
& O 0]
Using labeled text based data (Google Sets): Contains PASCAL 61.8% 63.4% 14.2%

list of related items
- A large set turns out to be useless! (anything is
related)

Table 1. Average Categorization Accuracy.

13



5/23/2011

“Objects in Context” — Limitations: Context

modeling
. T T W
. Categorization without With co-occurrence
Segmentation
i context context

i Local information only Means: P(person,dog)
§ > P(person, cow)

(Bonus Q: How did it handle the background?)

“Objects in Context” — Limitations: Context
modeling

With co-occurrence

Categorization without context
context P(person,horse) >

P(person, dog)

Segmentation
Local information only

But why? Isn’t it only a dataset bias? We have seen in the previous example that
P(person,dog) is common too.

“Objects in Context”

Object-Object or Stuff-Object ?

MSRC training data

. h 200001236 9 718100 21
Stuff-like : 3231830147 7003
668 481294 12
nEn @ ¢
s s ke "
REYS P Looks like “background
stuff — object (such as
water-boat) does help
rather than
“foreground” object co-
occurrences (such as
person-horse)
[but still car-person-motorbike
is useful in PASCAL]

Stuff

Labels with high
co-occurrences with
other labels

“Objects in Context” — Limitations:
Segmentation

¢ Too good: A few or many? How to select a good segmentation in
multiple segmentations?

« Can make object recognition & contextual reasoning (due to stuff
detection) much easier.

14
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“Objects in Context” - Limitations

No cue by unknown objects

No spatial relationship reasoning
Object detection part heavily depends on

good segmentations

Improvements using object co-occurrences
are demonstrated with images where many
labels are already correct. > How good is the

model?

Contextual Priming vs. Objects in Context

Scene->Object {Object,Stuff} <-> {Object,Stuff}

Simpler training data May need huge amount of labeled data
(only target object’s labels are enough)
Can be more generic
than scene->object with
a very good model

Scene information
is view-dependent 1]
(due to gist)

Contextual model is object detector

Object detector independent
independent, in theory. But:

+ use segmentation = easier to detect
stuff
- uses segmentation = can be unreliable

s8

Research

Finding the weakest link in person detectors

Devi Parikh Larry Zitnick
TTI, Chicago Microsoft Research

Object recognition

We’ve come a long way...

s,

Fischler and Elschlager, 1973

Dollar et al., BMVC 2009

15



Still a ways to go...

Dollar et al., BMVC 2009
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P65

o & < E L T e M
— — ! e

e

Part-based person detector
4 main components:

Feature Part Spatial » NMS /
selection detection model context

16
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Human debuggi
* Humans supply training data... Featue ol > RS »
— 100,000s labeled images

* We design the algorithms.
— Going on 40 years.

How can we help? ng
\

Feature

Spatial NMS /
selection

context

* Can we use humans to debug?

Feature Part

NMS /
selection detection

context Amazon Mechanical Turk

Feature Part
selection detection

Human performance Human debugging

* Humans ~90% average precision

Feature

Spatial NMS /

selection context

* Machines ~46% average precision

“W Is it a head, torso,

arm, leg, foot, hand, -
2 : k or nothing? &
- Head i
Low resolution 20x20 pixels

PASCAL VOC dataset

Feet Head

17
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Part detections

- Head - Torso - Arm
|:| Hand - Leg |:| Foot
I:l Person

iri

Ly

Machine

alh. R.B. G

ick, D McAlle: an

Humans

Part detections

Humans

Machine

Part detections

Machine

Humans

Machine
L]

18
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AP results

PASCAL
Bl nachine parts

I human parts

HSwW MSW  HD

Spatial model

Feature ’ Part ‘ Enm TS » NMS /
selection detection ] context
>

Person

AT o

| Lo 1
el il
SRE2RMa T RubNRilhIniRg
Not a person
L
itin

AP

08

0.6

04

02

Spatial model

PASCAL

Il machine spatial model
[ human spatial model

CH GH NH CL GL NL MP

Context/N MSP

ASCAL

CH GH NH CL GL NL

Il machine nms
[ human nms + context

19
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Improvement in AP

Conclusion

Spatial Models

02
015
01
0.05 I_l
0 I .
~0.08 INRIA PASCAL

http://www.ted.com/talks/lang/eng/pawan_sinha_on_how_brains learn to see.html

Pawan Sinha on how brains learn to see

7:00min

20
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