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Object recognition (part 1)

CSE P 576
Larry Zitnick (larryz@microsoft.com)

Recognition

The *Margaret Thatcher lllusion”, by Peter Thompson

Readings
« Szeliski Chapter 14

Recognition

The “Margaret Thatcher lllusion”, by Peter Thompson

Readings
+ Szeliski Chapter 14

What do we mean by “object recognition”?

Next 15 slides adapted from
Li, Fergus, & Torralba’s
excellent short course on
category and object
recognition
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Verification: is that a lamp?

Detection: are there people?
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Identification: is that Potala Palace?

Object categorization
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Scene and context categorization

- outdoor

[Face priority AE] When a bright part of the face is 100 bright

Applications: Computational photography

Applications: Assisted driving

Pedestrian and car detection ™

Lane detection

« Collision warning
systems with adaptive
cruise control,

« Lane departure warning
systems,

« Rear object detection
systems,

Applications: image search

Googse

Similar Image

Searchimages

Places Refine your image search with visual similarity

Hom ¥ Similar Images allows you to ssarch o images using pictures rather than
wards. Cliek the "Similac anages” link under an image to find other images

Eothidden City that look Sk it Try 3 search of your own or click on an example belaw.

Celebrities paris

Michael Jardan

Angeina Johe

Hal

Seth Rogan
Bihanna
Ant

imilar mages imia wnages  Similar images

Keth Haring

cubism temple
Sabador Dali
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http://similar-images.googlelabs.com/
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Challenges: viewpoint variation

Michelangelo 1475-1564

Challenges: occlu

Magritte, 1957

Challenges: illumination variation

Challenges: scale
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Challenges: deformation

Xu, Beihong 1943

Challenges: background clutter

Klimt, 1913

Challenges: intra-class variation

Let’s start simple

Today
« skin detection
« face detection with adaboost
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Face detection

How to tell if a face is present?

One simple method: skin detection

G

Skin pixels have a distinctive range of colors
« Corresponds to region(s) in RGB color space
— for visualization, only R and G components are shown above
Skin classifier
« Apixel X = (R,G,B) is skin if it is in the skin region
« But how to find this region?

Skin detection

Learn the skin region from examples
« Manually label pixels in one or more “training images” as skin or not skin
* Plot the training data in RGB space
— skin pixels shown in orange, non-skin pixels shown in blue
— some skin pixels may be outside the region, non-skin pixels inside. Why?
Skin classifier
« Given X = (R,G,B): how to determine if it is skin or not?

Skin classification techniques

Skin classifier
« Given X = (R,G,B): how to determine if it is skin or not?
« Nearest neighbor
— find labeled pixel closest to X
— choose the label for that pixel
« Data modeling
— fit a model (curve, surface, or volume) to each class
« Probabilistic data modeling
—_fit a probability model to each class
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Probability

Basic probability
« Xis arandom variable
* P(X) is the probability that X achieves a certain value
P(X) called a PDF

-probability distribution/density function
-a 2D PDF is a surface, 3D PDF is a volume

. 0<P(X)<1

./xp(x)dx=1 o TP =1

continuous X discrete X

« Conditional probability: P(X|Y)
— probability of X given that we already know Y

Probabilistic skin classification

P(skin|R)
Ir'd

P(~ skin|R)

Hi R R

Now we can model uncertainty
« Each pixel has a probability of being skin or not skin
- P(~skin|R) =1 — P(skin|R)

Skin classifier
+ Given X = (R,G,B): how to determine if it is skin or not?
« Choose interpretation of highest probability
— set X to be a skin pixel if and onlyif Ry < X < Rp

Where do we get P(skin|R) and P(~ skin|R) ?

Learning conditional PDF’s

P(R|skin) = F#skin D\xe!s w.\th color R
F#skin pixels

We can calculate P(R | skin) from a set of training images
« Itis simply a histogram over the pixels in the training images
— each bin R; contains the proportion of skin pixels with color R;

This doesn’t work as well in higher-dimensional spaces. Why not?

Approach: fit parametric PDF functions
+ common choice is rotated Gaussian

— center ¢ = X B
— covariance Y (X — X)(X — X)!
X

» orientation, size defined by eigenvecs, eigenvals

Learning conditional PDF’s

P(R|skin) = #skin pixels with color R
Fskin pixels

We can calculate P(R | skin) from a set of training images
« ltis simply a histogram over the pixels in the training images
— each bin R, contains the proportion of skin pixels with color R;
But this isn’t quite what we want
+ Whynot? How to determine if a pixel is skin?
« Wewant P(skin | R) not P(R | skin)
+ How can we get it?
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Bayes rule

P(X|Y) = 713(’/1'3((})};()()

In terms of our problem: .
what we measure  domain knowledge

(likelihood) prior)
P(R|skin) P(sKi
P(skin|R) = L(FIskin) P(skin)
P(R)
what we want normalization term

(posterior) P(R) = P(R|skin) P(skin)+P(R| ~ skin) P(~ skin)

The prior: P(skin)
« Could use domain knowledge
— P(skin) may be larger if we know the image contains a person
— for a portrait, P(skin) may be higher for pixels in the center
« Could learn the prior from the training set. How?
— P(skin) may be proportion of skin pixels in training set

Bayesian estimation

P(R|skin)P(skiny ~ P(skin) = 0.75

7 P(~skin) = 0.25
P(R| ~ skin) P(R| ~ skin) P(~ skin)
\
1 t 1 t
Hi K R R Ry R
likelihood posterior (unnormalized)

Bayesian estimation = minimize probability of misclassification

« Goalis to choose the label (skin or ~skin) that maximizes the posterior
— this is called Maximum A Posteriori (MAP) estimation
« Suppose the prior is uniform: P(skin) = P(~skin) = 0.5
— in this case P(skin|R) = ¢P(R|skin), P(~ skin|R) = cP(R| ~ skin)
— maximizing the posterior is equivalent to maximizing the likelihood
» P(skin|R) > P(~ skin|R) ifand only if P(R|skin) > P(R|~ skin)
— this is called Maximum Likelihood (ML) estimation

Skin detection results

Figure from *Statis
J. Rehg, Pros

Pattern Recoy

General classification

This same procedure applies in more general circumstances
« More than two classes
« More than one dimension

— ==

Example: face detection
« Here, X is an image region
— dimension = # pixels
— each face can be thought
of as a point in a high
dimensional space
H. Schneiderman, T. Kanade. "A Statistical Method for 3D
Object Detection Applied to Faces and Cars". IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2000)
ROO.

hitpwnany-2.cs.cmu. edulafs P

H. Schneiderman and T.Kanade



http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf
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Issues: metrics

What's the best way to compare images?
» need to define appropriate features
« depends on goal of recognition task

exact matching classification/detection
complex features work well simple features work well
(SIFT, MOPS, etc.) (Viola/Jones, etc.)

Issues: metrics

What do you see?

Issues: metrics

What do you see?

Metrics

Lots more feature types that we haven’t mentioned
* moments, statistics
— metrics: Earth mover’s distance, ...
« edges, curves
— metrics: Hausdorff, shape context, ...
« 3D: surfaces, spin images
— metrics: chamfer (ICP)

We'll discuss more in Part 2
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Issues: feature selection

S A

If all you have is one image: If you have a training set of images:
non-maximum suppression, etc. AdaBoost, etc.

Issues: data modeling

Generative methods
» model the “shape” of each class
— histograms, PCA, mixtures of Gaussians
— graphical models (HMM's, belief networks, etc.)

Discriminative methods
« model boundaries between classes
— perceptrons, neural networks
— support vector machines (SVM'’s)

Generative vs. Discriminative

Issues: dimensionality
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Generative Approach

Discriminative Approach
model individual classes, priors

model posterior directly

from Chris Bishop

What if your space isn'’t flat?
« PCA may not help

Nonlinear methods
LLE, MDS, etc.

10
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Issues: speed

Case study: Viola Jones face detector
Next few slides adapted Grauman & Liebe’s tutorial

+  http://www.vision.ee.ethz.ch/- i ing! rial-aaai08/
Also see Paul Viola’s talk (video)
+  http:/iwww.c: lington.edu '7/04spl/contents.htmi#DM

Face detection

Where are the faces? Not who they are, that's

recognition or identification.
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Feature extraction
“Rectangular” filters
ﬁ ‘ e Feature output is difference
between adjacent regions
no ‘ =] N

7 r?g

Efficiently computable
with integral image: any
sum can be computed
in constant time

Avoid scaling images
scale features directly
for same cost

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

43

Sums of rectangular regions

How do we compute the sum of
the pixels in the red box?

After some pre-computation, this
can be done in constant time for
any box.

This “trick” is commonly used for
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Haar wavelets (a fundemental building block of
many object recognition approaches.)

11


http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/
http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/
http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/
http://www.cs.washington.edu/education/courses/577/04sp/contents.html
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Sums of rectangular regions

The trick is to compute an

“integral image.” Every pixel is

the sum of its neighbors to the

upper left.

Sequentially compute using:

Tl y) — Iw,y) +

He=1y)+ Hz.y—1) - .

I =1y —1)

Sums of rectangular regions

Solution is found using:

A+D-B-C 2 £

What if the position of the box lies
between pixels?
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Large library of filters

=1 @ =

~ e

ll5 m -

Considering all
possible filter
parameters:
position, scale,
and type:

180,000+
possible features
associated with
each 24 x 24
window

Use AdaBoost both to select the informative

features and to form the classifier

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

AdaBoost for feature+classifier selection

* Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

t Resulting weak classifier:
o

1
o eoe 860 66 ) +1 il [(x) =9,
t T
I b {-1 otherwise

£(x)—> For next round, reweight the
1 examples according to errors,

Outputs of a possible choose another filter/threshold
rectangle feature on combo

faces and non-faces.
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Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

12



Visual Object Recognition Tutorial
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AdaBoost: Intuition

™Y @
Weak °
Classifier | .= --=-""""
® 9
®e

Figure adapted from Freund and Schapire

Consider a 2-d feature
space with positive and
negative examples.

Each weak classifier splits
the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.

49

K. Grauman, B. Leibe

AdaBoost: Intuition

Weak
Classifier 1 ™
® 0
Weak
classifier 3

Final classifier is
combination of the
weak classifiers

Weights
Increased

Weak >._~: ]
Classifier 2 — q

K. Grauman, B. Leibe

Visual Object Recognition Tutorial
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AdaBoost: Intuition

Weak
Classifier 1 ™~

Weights
Increased

Weak }. @
Classifier 2 —— []

K. Grauman, B. Leibe

o The final strong classifier is:

otherwise

wo={ ) Soam@2 1T

where a; = log 7~

Final classifier is combination of the weak ones, weighted according

to error they had.

K. Grauman, B. Leibe

13



. AdaBoost Algorithm

 Given example images (w1, 31}, .., (2u, ) where o
¥ = 0,1 for negative and positive examples respec- Start with uniform
tively. s weights on
. . training examples
o Initialize weights wi s = 74, & for i = 0, 1 respee- S P

tively, where sm and 1 are the number of negatives and
positives respectively.

e Fort=1,...,T:

{X450%0}
For T rounds

1. Norinalize the weights,

Wi, 4—2—

so that 1wy is a probability distribution.

5

For each feature, j. train a classifier k; which
is restricted to using a single feature. The
error is evaluated with respect to we. € =

3w hylw) — il

. Choose the classifier, k. with the lowest error e,

Find the best threshold and
- polarity for each feature, and
return error.

PR

. Update the weights
Re-weight the examples:

Wepri = "‘!-eﬁ?xl i - Incorrectly clas‘s_iﬁed -> more weight
Correctly classified -> less weight
where e; = 0 if example x; is classified cor-
rectly, e; = 1 otherwise, and §, = =~
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Cascading classifiers for detection

For efficiency, apply less
accurate but faster classifiers
first to immediately discard
windows that clearly appear to
be negative; e.g., O XL nLF LR

F
» Filter for promising regions with an ' A '
initial inexpensive classifier

~ Build a chain of classifiers, choosing

cheap ones with low false negative
rates early in the chain

Fleuret & Geman, 1JCV 2001
Rowley et al., PAMI 1998

K. Grauman, B. Leibe Figure from Viola & Jones CVPR 2001

Viola & Jones, CVPR 2001 55

Visual Object Recognition Tutorial
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Picking the best classifier

Efficient single pass approach:

At each sample compute:
€=min (S+(T-5),S+(T-5))

Find the minimum value of €, and use the value of the
corresponding sample as the threshold.

S = sum of samples below the current sample
T = total sum of all samples

54
K. Grauman, B. Leibe
Viola-Jones Face Detector: Summary
Train cascade of @
classifiers with .
AdaBoost . 5 B
4
New image
= z Selected features,
Non-faces thresholds, and weights
* Train with 5K positives, 350M negatives
¢ Real-time detector using 38 layer cascade
e 6061 features in final layer
¢ [Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/] 5

K. Grauman, B. Leibe

14
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Non-maximal suppression (NMS) Non-maximal suppression (NMS)

a . (o"q

Many detections above threshold.

Visual Object Recognition Tutorial
Visual Object Recognition Tutorial

57 58
Viola-Jones Face Detector: Results . R
1 | ) ost \Is this good?
= First two features |
selected goes|
g |
_ _ £
© T -
2 g |
g 5 Bu
S 5
= = |
< <
o 1= o7
= =
=2 =
§ é 065,
: :
‘ﬂ") g 08 05 1 15 2 25 3 s 4
_g _g faise postive rate 10
% % Similar accuracy, but 10x faster
S 50 > 60
K. Grauman, B. Leibe

15
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Viola-Jones Face Detector: Results Viola-Jones Face Detector: Results

Visual Object Recognition Tutorial
Visual Object Recognition Tutorial

K. Grauman, B. Leibe K. Grauman, B. Leibe

Viola-Jones Face Detector: Results

Detecting profile faces?

Detecting profile faces requires training separate
detector with profile examples.
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K. Grauman, B. Leibe K. Grauman, B. Leibe
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Viola-Jones Face Detector: Results

K. Grauman, B. Leibe
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http://www.pittpatt.com/face_tracking/

66
K. Grauman, B. Leibe
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