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Autonomous vehicles

* Navlab (1990’s)
* Stanley (Offroad, 2004)
ORT (other random topics) ° BOSS (Urban, 2007)
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Navlab (1985-2001)

Navlab 10

Navlab (1992)
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Neural Network Perception for Mobile Robot Guidance, Dean A. Pomerleau, 1992

Original |
Image

Road Curvature
Hypotheses

Transformed
Images

RALPH: Rapidly Adapting Lateral Position Handler, Dean Pomerleau, 1995

No Hands Across America

« 2797/2849 miles (98.2%)

* The researchers handled the throttle and
brake.

* When did it fail?
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Stanley
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Following slides courtesy of Sebastian Thrun

nd Challenge 2005: 195 T Final Result: Five Robots finished!

STATUS BOARD

Final Results as of 10/9/2005
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Manual Offroad Driving

o

Stanley Software Architecture
SENSOR INTERFACE PERCEPTION PLANNING&CONTROL USER INTERFACE

RDDF database. Top level control

e
:

GPS position

|_GPs compass
MU interface

|_Brakeisieering _ puy
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Low-Level Steering Control

Steering
Angle
(with respect

e Stanford Racing Team

Parameterizing Search Space

¢ Stanford Racing Team

e

Discuss Kalman Filter

To the whiteboard...

Stanford Racing Team

Planning = Rolling out Trajectories

s

Stanford Racing Team
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Lateral Offset Profiles Smooth Driving at 25mph

Swerves
— step changes in desired lateral offset
— avoidance of frontal obstacles

COURSE : MILE 47,05

ggxw T 217N ) PARAM SPEED

VISION MAX: none
EXTRAWIDTH: 02 m
OFFSET; 0.21 RIGHT

Nudges
— ramp changes in desired lateral offset
— Road centering

Stanford Racing Team

UKF Position Estimation
B

Laser Terrain Mapping

o
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Laser Range Data Integration

2. stanford Racing Team

Range Sensor Interpretation Obstacle Detection

. stanford Racing Team




Effect of Pitching

Stanford Racing Team

Driving Beer Bottle Pass:

JRSE : MILE 124.32
/ 10.9 MPH
RDDF LIMIT: 10.0 MPH
TRAJ SPEED: 10.0 MPH
REC MAX: none

VISt

E IAWIDTH: 0.1 m
OFFSET: 0.68 RIGHT

T:0.008:0.30S -56
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Stanley....After Learning

Without Learning: 12.6% false positives With Learning: 0.02% false positives

- tol! Stanford Racing Team . ) 8 5 Memcmet

Stanley Problems at Mile 22.34

ON COURSE : MILE 22.34
VELOCITY: 22.8 MPH
RDDF LIMI 0 MPH
TRAJ SPEED: 30.0 MPH

R B

- i Stanford Racing Team
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Limits of lasers

Lasers see 22m = 25mph

They needed to go 35mph to finish the race.

Computer Vision Terrain Mapping

F2. stanford Racing Team I ) o - tal ! F. stanford Racing Team T 4 MD301 | Mt ta

What Defines A Road? Idea: Continual Terrain Adaptation

Fast adaptation: Mean & covariance of Gaussian, exponential forgetting
Slow learning: memory of k past Gaussians
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Adaptive Vision In Action (NQE)

P -

2. stanford Racing Team

Driving Beer Bottle Pass: Vision

. stanford Racing Team
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Adaptive Vision in Mojave Desert

Speed Control

Stanford Racing Team

129013 | Wit L
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Speed Controllers Controlling speed

DARPA Speed Limit m————

Curvature =———p

If you hit a bump, slow down (that first pothole really hurts...)

Velocity

Vehicle pitch/roll —— Controller If you haven't hit a bump in awhile linearly increase speed.

Obstacles Clearance =————
Vertical acceleration ——— Slow down on hills.

target velocity

Throttle ————>
Throttle &
Brake pressure = Brake = Throttle, Brake

Forward velocity ———> Controller

Stanford Racing Team @ MoV B & e ] . ), F. ; 3 i

How Fast Do Humans Drive Learning To Drive Like a Person

SEREY

Stanford Racing Team : @ - i Stanford Racing Team
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More info Boss &

e
AOBOTICS
INSTITUTE

For full detail read the paper:

Stanley: The Robot that Won the DARPA Grand Challenge,
Sebastian et al., Journal of Field Robotics, 2006

http://www.tartanracing.org/blog/index.html#22

Stanford Racing Team e ; E -

DARPA Urban Challenge

¢ 36 teams invited to National Qualification
Event.

¢ 11 teams invited to Urban Challenge Final
Event

Suddenly, the vehicle did a U-turn and headed directly at Tether’s vehicle.
“Five of us in the vehicle were all yelling ‘pause!’” Tether recalled,
referring to the pause command that DARPA could send to a vehicle. 2007 Chevrolet Tahoe

http://www.tartanracing.org/blog/index.html#22

CompactPCl chassis with 10 2.16-GHz Core2Duo processors,
each with 2 GB of memory

12
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Sensor Characteristics

Applanix POS-LV 220/420 GPS/IMU (APLX) » Submeter accuracy with Omnistar VBS corrections

 Tightly coupled inertial /GPS bridges GPS outages
SICK LMS 201.505/514 LIDAR (LMS)  180/90 deg x 0.9 deg FOV with 1/0.5-deg angular resolution
© 80-m maximum range

Velodyne HDL-64 LIDAR (HDL) « 360

26-deg FOV with 0.1-deg angular resolution
)-m maximum range

Continental ISF 172 LIDAR (1SP) 12 %32 deg FOV

» 150-m maximum range
IBEO Alasca XT LIDAR (XT) * 240 % 3.2 deg FOV

* 3004

aximum range
Continental ARS 300 Radar (ARS) ® 60/17 deg x 3.2 deg FOV

© 60-m/200-m maximum range
Point Grey Firefly (PGF) « High-dynamic-range camera
o 45-deg FOV

Motion planning

* Structured driving (road following)

* Unstructured driving (maneuvering in parking
lots)

Figure 4. Smooth and sharp trajectories. The trajectory
sets are generated to the same endpoints but differ in their
initial commanded curvature.

Figure 5. A single timeframe following a road lane from the DARPA Urban Challeng
extracted from the lane (b), the trajectories generated to track this path (c), and the evalu.
against both static and dynamic obstacles (d and e).

hawn s the centerline path
n of one of these trajectories
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Where am I?

* GPS + inertial + wheel encoder = 0.1m, but if
you go under a tree you loose the signal. 30
minutes to reacquire.

* Lane markers are found using SICK lasers.

Particle Filters

Particle filter slides courtesy of Sebastian Thrun

Sensor Information: Importance Sampling
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Sensor Information: Importance Sampling

Robot Motion
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Road estimation

re13. Exampl imate (pa
allel curves) for an off-road scene. Obstacles and berms are
illustrated by pixels.

Overlap Area

Yield-Across Polygon

Figure 16. Typical tee intersection with yield lanes.

Trequired = Taction + Tdelay + Tspacing

28.

Failures

Data replay shows how the incorrectly extrapolated path of a vehicle (shaded rectangles) and !In.‘ wall (pixels

Figure
to the right of Boss) create a space that Boss believes is too narrow to drive through (indicated by the arrow)
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Failures

Figure 29. The false obstacles generated by dust and the bush behind Boss prevented Boss from initially completing its
U-turn.

Failures

Figure 30. False obstacles that caused Boss to stutter when leaving a dirt road.

Failures

Figure 31. This incorrect estimate of an oncoming vehicle's orientation caused Boss to swerve and almost to become
irrevocably stuck.

More info

Autonomous Driving in Urban Environments:
Boss and the Urban Challenge, Urmson et al.,
Journal of Field Robotics, 2008
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A Fast Approximation
of the Bilateral Filter
using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Link with Linear Filtering

X X space: 1D Gaussian
Introducing a Convolution

x range: 1D Gaussian

combination: 2D Gaussian
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Link with Linear Filtering
Introducing a Convolution

1 - —p: N Lcombination: 2D Gaussian
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Corresponds to a 3D Gaussian on a 2D image.

Link with Linear Filtering
Introducing a Convolution

. sum all values black’= zero \
! ‘
Wer I Wy i)

W .'ll;l - Z

(a,0)ESxR Va

space-range Gaussian (

sum all values multiplied by kernel = convolution
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Link with Linear Filtering
Introducing a Convolution

result of the convolution

7bf Tbf
Wyt I3
= E space-range Gaussian

b
Mo (a,¢)ESKR

Wy Iy

q

Link with Linear Filtering
Introducing a Convolution

result of the convolution

bt rhf
Wht I

= E space-range Gaussian

Sral
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Vy
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higher dimensional functions

|

higher dimensional functions
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higher dimensional functions

DOWNSAMPLE

Gaussian convolution

UPSAMPLE

Accuracy versus Running Time

 Finer sampling increases accuracy.
» More precise than previous work.

i

i
Digital
photograph
1200 x 1600

PSNR as function of Running Time

e e

Durand-Dorsey approximation

our approximation

Straightforward
implementation is
over 10 minutes.

PSNR (in dB}

SRR . Ceeen e
time (in s)

Visual Results

o Comparison with previous work [Durand 02] | Bie? i
- running time = 1s for both techniques ol
1200 x 1600

input exact BF our result  prev. work

difference

with exact
computation
(intensities in [0:1])

More advanced approaches:

http://graphics.stanford.edu/papers/gkdtrees

http://graphics.stanford.edu/papers/permutohedral
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