Large-scale matching

CSE P 576 Larry Zitnick (<u>larryz@microsoft.com</u>)

Large scale matching

How do we match millions or billions of images in under a second?

Is it even possible to store the information necessary?

1 image (640x480 jpg) = 100 kb

1 million images = 100 gigabytes

1 billion images = 100 terabytes

100 billion images = 10,000 terabytes (Flickr has 5 billion)

Interest points

Currently, interest point techniques are the main method for scaling to large databases.

Searching interest points

How do we find similar descriptors across images?

Nearest neighbor search:

Linear search:

1 million images x 1,000 descriptors = 1 billion descriptors (Too slow!)

Instead use approximate nearest neighbor:

KD-tree

· Locality sensitive hashing

KD-tree

Short for "k-dimensional tree."

Creates a binary tree that splits the data along one dimension:

KD-tree

Algorithm for creating tree:

- 1. Find dimension with highest variance (sometimes cycle through dimensions).
- 2. Split at median.
- 3. Recursively repeat steps 1 and 2, until less than "n" data points exist in leaves.

Searching for approximate nearest neighbor:

- Traverse down the tree until you reach the leaf node.
 Linearly search for nearest neighbor among all data points in leaf node.

Problem:

The nearest neighbor may not be in the "found" leaf:

Backtracking (or priority search)

The nearest neighbor may not be in the "found" leaf:

Backtrack to see if any decision boundaries are closer than your current "nearest neighbor."

In high dimensional space, the number of "backtracks" are typically limited to a fixed number. The closest decision boundaries are stored and sorted.

KD-tree

Other variations:

- Use Principal Component Analysis to align the principal axes of the data with the coordinate axes
- · Use multiple randomized KD-trees (by rotating data points)

Optimised KD-trees for fast image descriptor matching Chanop Silpa-Anan Richard Hartley, CVPR 2008

Storing the descriptors

Storing the descriptors is expensive:

1000 descriptors x 128 dimensions x 1 byte = 128,000 bytes per image

1 million images = 120 gigabytes

Other methods

Spectral hashing (uses thresholded eigenvectors) to find binary codes:

 $h(v) = sign(cos(kw \cdot v))$ "w" is a principal component, "k" is chosen based on data.

Spectral Hashing, Yair Weiss, Antonio Torralba, Rob Fergus, NIPS 2008

Locality-sensitive binary codes:

 $h(v) = sign(cos(kw \cdot v))$ "w" is a randomly sampled vector, "k" is chosen based on data.

Locality-Sensitive Binary Codes from Shift-Invariant Kernels, Maxim Raginsky, Svetlana Lazebnik, NIPS 2009

Creating vocabulary

Naïve method is to use k-means clustering on the descriptors.

But this is slow to assign new descriptors to visual words. Need to match the descriptor to every cluster mean = expensive when the vocabulary has 1,000,000 words.

Stop words

If a visual word commonly occurs in many images remove it. You don't want too many images returned for a single word in the inverse look-up table.

It is common practice to have a few thousand stop words for large vocabulary sizes.

It's why search engines don't use the words "a" and "the" in their search queries...

Weighting visual words

Some visual words are more informative than others.

Use TF-IDF weighting. If a visual word occurs frequently in an image but is rare in other images give it a higher weight.

TF (term frequency) $ext{tf}_{i,j} = rac{n_{i,j}}{\sum_k n_{k,j}}$

IDF (inverse document frequency) $\operatorname{idf}_{i} = \log \frac{|D|}{|\{j: t_i \in d_j\}|}$

 $\label{eq:tf-idf} \texttt{TF-IDF} \quad (\mathrm{tf-idf})_{i,j} = \mathrm{tf}_{i,j} \times \mathrm{idf}_i$

Commonly used in many types of document retrieval.

Reducing # of visual words What if storing a single integer per visual word is too much? 1000 descriptors x 32 bits = 4,000 bytes per image 1 million images = 3.7 gigabytes How can we reduce the number of visual words? 100 visual words x 32 bits = 400 bytes per image

1 million images = 380 megabytes We're in RAM (on smartphone)!

Randomly removing visual words

	ove 2/3s of visual word I_1 , v $\in I_2$) = 0.5*0.33*0.	
Image 1	Image 2	Image 1 Image 2
2	2	2 85
21	32	67 231
23	85	321 678
67	86	363 743
105	35	
231	105	
321	231	Not a good idea
363	321	
375	375	
578	678	
586	743	
745	745	

Randomly remove specific visual words

For example: Remove all even visual words.

 $\mathsf{P}(\mathsf{v} \in \mathsf{I}_1, \mathsf{v} \in \mathsf{I}_2) = 0.5$

Some images may not have any visual words remaining:

Image 1	Image 2	Image 1	Image 2
2	2	63	85
22	32	325	35
24	85	745	105
63	86		231
104	35		321
232	105		743
325	231		745
366	321		
378	378		
578	678		
586	743		
745	745		

Min-hash

Maintain Jaccard similarity while keeping a constant number of visual words per image.

Min Hashing

- Randomly permute rows
- Hash h(C_i) = index of first row with 1 in column C_i
- Suprising Property
- Why? $P[h(C_i) = h(C_j)] = sim_J(C_i, C_j)$
 - Both are A/(A+B+C)
 - Look down columns C_i, C_i until first non-Type-D row
 - $-h(C_i) = h(C_i) \leftrightarrow type A row$

- Pick P random row permutations
- MinHash Signature

sig(C) = list of P indexes of first rows with 1 in column C

- Similarity of signatures
 - Let sim_H(sig(C_i),sig(C_j)) = fraction of permutations where MinHash values agree
 - Observe $E[sim_H(sig(C_i), sig(C_j))] = sim_J(C_i, C_j)$

Sketches

What if hashes aren't unique enough? I.e., we return too many possible matches per hash in an inverse look-up table?

Concatenate the hashes into "sketches" of size "k".

h₁ = 23, h₂ = 243, h₃ = 598 s₁ = 598,243,023

The probability of two sketches colliding is:

$$sim_J(C_i, C_j)^k$$

Typically you have to balance the precision/recall tradeoffs when picking the sketch size and number of sketches.

Overview

1 million images	100 GB
1 million images (descriptors)	120 GB
1 million images (descriptors PCA)	30 GB
1 million images (binary descriptors)	7.5 GB
1 million images (visual words)	3.7 GB
1 million images (hashed visual words)	380 MB
10 billion images (hashed visual words)	3.6 TB