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Large scale matching 

How do we match millions or billions of images in 
under a second? 

 

Is it even possible to store the information 
necessary? 

 
1 image (640x480 jpg) = 100 kb 

1 million images = 100 gigabytes 

1 billion images = 100 terabytes 

100 billion images = 10,000 terabytes  (Flickr has 5 billion) 

 

Interest points 

Find interest points Extract patches 

Currently, interest point techniques are the main method 
for scaling to large databases. 

Searching interest points 

How do we find similar descriptors across images? 
 
Nearest neighbor search: 
 Linear search: 

    1 million images x 1,000 descriptors = 1 billion descriptors (Too slow!) 
 
Instead use approximate nearest neighbor: 
 
• KD-tree 
• Locality sensitive hashing 
 

KD-tree 

Short for “k-dimensional tree.” 
 
Creates a binary tree that splits the data along one dimension: 

X > 0 

Y > 0 Y > 1 

X > 1 
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KD-tree 

Algorithm for creating tree: 
 
1. Find dimension with highest variance (sometimes cycle through dimensions). 
2. Split at median. 
3. Recursively repeat steps 1 and 2, until less than “n” data points exist in leaves. 

Searching for approximate nearest neighbor: 
 
1. Traverse down the tree until you reach the leaf node. 
2. Linearly search for nearest neighbor among all data points in leaf node. 

Problem: 
The nearest neighbor may not be in the “found” leaf: 

Backtracking (or priority search) 
The nearest neighbor may not be in the “found” leaf: 

Backtrack to see if any decision 
boundaries are closer than your 
current “nearest neighbor.” 

In high dimensional space, the 
number of “backtracks” are 
typically limited to a fixed number.  
The closest decision boundaries are 
stored and sorted. 

High-dimensional space 

How far away are two random points on an n-dimensional sphere? 
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Don’t follow your “2D intuitions” 



5/13/2011 

4 

KD-tree 

Other variations: 
 
• Use Principal Component Analysis to align the principal axes of the 

data with the coordinate axes 
 

• Use multiple randomized KD-trees (by rotating data points) 

Optimised KD-trees for fast image descriptor matching 
Chanop Silpa-Anan Richard Hartley, CVPR 2008 

Storing the descriptors 

Storing the descriptors is expensive: 
 
1000 descriptors x 128 dimensions x 1 byte  = 
 128,000 bytes per image 
 
1 million images = 120 gigabytes 

PCA 
Reduce the dimensionality of the descriptor using PCA. 

Pick the “n” orthogonal dimensions with highest variance. 

Storing the descriptors is still expensive: 
 
1000 descriptors x 32 dimensions x 1 byte  =   
32,000 bytes per image 
 
1 million images = 30 gigabytes 

Eigenvectors of face images 

Locality sensitive hashing 

• Assume points are embedded in Euclidean space 

 

 

• How to binarize so Hamming distance approximates Euclidean 
distance? 

 

 
 

Ham_Dist(10001010,11101110)=3 

 
1000 descriptors x 64 dimensions x 1 bit  =   
 8,000 bytes per image 
 
1 million images = 7.5 gigabytes We’re in RAM! 
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Finding the binary code 

• For each bit: 
– Compute a random unit vector “r”. 

– For input vector “v”, set the bit equal to: 

   h(v) = sign(v  r) 

 

 

. 

The following holds: 

is closely related to cos(θ(u,v)).  

1 0 0 

P-stable distributions 

• Projects onto an integer instead of bit: 
– Compute a random Gaussian vector “a”. 

– For input vector “v”, set the index equal to: 

 

 

 

– “b” and “r” are chosen by hand. 

 

 

   
Datar, M.; Immorlica, N., Indyk, P., Mirrokni, V.S. (2004). "Locality-Sensitive Hashing Scheme Based on p-
Stable Distributions". Proceedings of the Symposium on Computational Geometry.  

Other methods 

Spectral hashing (uses thresholded eigenvectors) to find binary codes: 

Spectral Hashing, Yair Weiss, Antonio Torralba, Rob Fergus, NIPS 2008  

Locality-sensitive binary codes: 

h(v) = sign(cos(kw  v))  . 
“w” is a principal component, “k” is chosen based on data. 

h(v) = sign(cos(kw  v))  . 
“w” is a randomly sampled vector, “k” is chosen based on data. 

Locality-Sensitive Binary Codes from Shift-Invariant Kernels, 
Maxim Raginsky, Svetlana Lazebnik, NIPS 2009 

Visual words 

What if we just quantize the descriptors to create “visual words.” 

Each descriptor = one integer 
 
 

 
1000 descriptors x 32 bits =   
 4,000 bytes per image 
 
1 million images = 3.7 gigabytes 

We’re in RAM (on my laptop)! 

http://en.wikipedia.org/wiki/Piotr_Indyk
http://en.wikipedia.org/wiki/Piotr_Indyk
http://theory.csail.mit.edu/~mirrokni/pstable.ps
http://theory.csail.mit.edu/~mirrokni/pstable.ps
http://theory.csail.mit.edu/~mirrokni/pstable.ps
http://theory.csail.mit.edu/~mirrokni/pstable.ps
http://theory.csail.mit.edu/~mirrokni/pstable.ps
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Inverse lookup table 

0 3 0 1 1 

Creating vocabulary 

Naïve method is to use k-means clustering on the descriptors. 
  

But this is slow to assign new descriptors to visual words.  Need to 
match the descriptor to every cluster mean =  expensive when the 
vocabulary has 1,000,000 words. 

Vocabulary tree 
Recursively split descriptor space using k-means, with k ϵ [3,10] 

Only need 60 comparisons for k = 10 with 1,000,000 visual words. 

Scalable Recognition with a Vocabulary Tree, D. Nister, H. Stewenius, CVPR 2006. 

Stop words 

If a visual word commonly occurs in many images remove it.  You don’t want 
too many images returned for a single word in the inverse look-up table.  
 
It is common practice to have a few thousand stop words for large vocabulary 
sizes. 

It’s why search engines don’t use the words “a” and “the” in their search 
queries… 
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Weighting visual words 

Some visual words are more informative than others. 
 
Use TF-IDF weighting.  If a visual word occurs frequently in an image but is 
rare in other images give it a higher weight.  

TF (term frequency) 
 
 
 
IDF (inverse document frequency) 
 
 
 
TF-IDF 

Commonly used in many types of document retrieval. 

Reducing # of visual words 

1000 descriptors x 32 bits =   
 4,000 bytes per image 
 
1 million images = 3.7 gigabytes 

What if storing a single integer per visual word is too much? 

100 visual words x 32 bits =   
 400 bytes per image 
 
1 million images = 380 megabytes 

How can we reduce the number of visual words? 

We’re in RAM (on smartphone)! 

Randomly removing visual words 
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P(v ϵ I1, v ϵ I2) = 0.5 

Randomly remove 2/3s of visual words: 
 P(v ϵ I1, v ϵ I2) = 0.5*0.33*0.33 = 0.0555  
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Not a good idea! 

Randomly remove specific visual words 

For example: Remove all even visual words. 

P(v ϵ I1, v ϵ I2) = 0.5 

Some images may not have any visual words remaining: 
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Min-hash 

Maintain Jaccard similarity while keeping a constant number of visual 
words per image. 

Jaccard similarity: 

ji

ji

jiJ
CC

CC
)C,(Csim






C1   C2 

 

  0     1 

  1    0 

  1    1         simJ(C1,C2) = 2/5 = 0.4 

  0    0 

  1    1 

  0    1 

 

*Minhash slides based on material from Rajeev Motwani and Jeff Ullman 

Key Observation 

• For columns Ci, Cj, four types of rows 

   Ci Cj 

  A  1  1 

  B  1  0 

  C  0  1 

  D  0  0 

• Overload notation: A = # of rows of type A 

• Claim 
CBA

A
)C,(Csim jiJ




Min Hashing 

• Randomly permute rows 

• Hash h(Ci) = index of first row with 1 in column Ci  

• Suprising Property 

 

• Why? 

– Both are A/(A+B+C) 

– Look down columns Ci, Cj until first non-Type-D row 

– h(Ci) = h(Cj)  type A row 

   
jiJji C,Csim)h(C)h(CP 

Min-Hash Signatures 

• Pick – P random row permutations  

• MinHash Signature 
   

sig(C) = list of P indexes of first rows with 1 in column C 

 

• Similarity of signatures  
– Let simH(sig(Ci),sig(Cj)) = fraction of permutations 

where MinHash values agree  

– Observe  E[simH(sig(Ci),sig(Cj))] = simJ(Ci,Cj)  
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Sketches 

What if hashes aren’t unique enough?  I.e., we return too many 
possible matches per hash in an inverse look-up table? 
 
Concatenate the hashes into “sketches” of size “k”. 

h1 = 23, h2 = 243, h3 = 598                  s1 = 598,243,023 

k

jiJ )C,(Csim

Typically you have to balance the precision/recall tradeoffs when 
picking the sketch size and number of sketches. 

The probability of two sketches colliding is: 

Overview 

1 million images      100 GB 
1 million images (descriptors)   120 GB 
1 million images (descriptors PCA)  30 GB 
1 million images (binary descriptors)   7.5 GB 
1 million images (visual words)   3.7 GB 
1 million images (hashed visual words) 380 MB 

10 billion images (hashed visual words) 3.6 TB 


