
Project 2

Feature Detection and Matching
Due: Sunday Feb 17

Part 1. Feature Detection
•

Use Harris corner detection

•

For each image point

–

Use a window about the point

–

Compute the Harris matrix M

–

Use R(H) = det(M) –

k(trace

M)2

as the corner strength function

•

Choose points where R is above a threshold and is a local
maximum

Part 2. Feature Description

1. Simple descriptor: use a small square window about
the feature point (say 5 X 5). This can be the baseline
for matching. Feel free to try variants of this basic
descriptor, too, like normalizing the gray tones.

2. Advanced descriptor: make your descriptor invariant
to rotation, using the dominant orientation idea. You
will find the dominant orientation in a window about an
interest point and use it to rotate the window so that
dominant orientation is up, as shown on Matt’s slides.

Computing Dominant Orientation

•

Find the gradient magnitude and direction of
each pixel in a square window about the interest
point

•

Create a histogram of gradient directions, using
the magnitudes as weights (instead of just
adding 1 to bin counts)

•

Find the direction θ

with the highest bin value.

Computing the Rotated Window
•

Now that you have θ, you can fill an empty descriptor
with the values you sample from a counterclockwise
rotation by θ.

•

When you want the value for a pixel (x,y) in the
descriptor, you have to sample it from the “rotated”

 window in the image. This requires a rotation followed by
a translation.

•

Follow the directions in the project handout to compute
the floating point coordinates, and use interopolation

of

the 4 closest pixel values to get the value for (x,y).

(0,0)

Interest point detected p (6,5)

a(-1,-1) -> rotate by 315 -> a’(-1.4,0) -> translate by (6,5) -> a’’(4.6,5)
b(0,-1) -> rotate by 315 -> b’(-0.7, -0.7), translate by (6,5) -> b’’(5.3, 4.3)
c(1,-1) -> rotate by 315 -> c’(-0, -1.4) translate by (6,5) -> c’’(6,3.6)
d(-1,0) -> rotate by 315 -> d’(-0.7,0.7) translate by (6,5) -> d’’(5.3, 5.7)
p(0,0) -> rotate by 315 -> p(0,0) translate by (6,5) -> p(6,5)
e(1,0) -> rotate by 315 -> e’(0.7,-0.7) translate by (6,5) -> e’’(6.7,4.3)
f(-1,1) -> rotate by 315 -> f’’(0, 1.4) translate by (6,5) -> f’’(6,6.4)
g(0,1) -> rotate by 315 -> g’(0.7,0.7) translate by (6,5) -> g’’(6.7,5.7)
h(1,1) -> rotate by 315 -> h’(1.4,0) translate by (6,5) -> h’’(7.4,5)

p
a b c

ed
gf h

•When doing the rotation, assume the
interest point is at (0,0)
•After rotation, translate the rotated
points by the interest point location

Descriptor window

Part 3. Feature Matching
•

You will match your descriptors across a pair of images I1 and I2.

•

For each feature detected in I1, find the best corresponding feature
in I2 or null if there is no good match. The skeleton code provides
the SSD to measure the goodness of a match.

•

To decide if a match exists, threshold on (score of best feature
match)/(score of second best feature match)

•

Test on provided data sets. The fundamental matrix giving the exact
transformation from one image to another is given. The function
applyHomography

is given in the C++ code.

•

Compare your two feature descriptors and SIFT. Use testMatch

for
your own features and testSIFTMatch

for SIFT features.
EvaluateMatch

does the evaluation.

Bikes

Leuven

Wall

	Project 2
	Part 1. Feature Detection
	Part 2. Feature Description
	Computing Dominant Orientation
	Computing the Rotated Window
	Slide Number 6
	Part 3. Feature Matching
	Bikes
	Leuven
	Wall

