

This earlier was the same of t

Texture

Today's Reading

- Alexei A. Efros and Thomas K. Leung, "Texture Synthesis by Nonparametric Sampling," Proc. International Conference on Computer Vision (ICCV), 1999.
 - http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.pdf

Modeling Texture

What is texture?

How can we model it?

Markov Chains

Markov Chain

- a sequence of random variables x_1, x_2, \dots, x_n
- \mathbf{x}_t is the **state** of the model at time t

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$$

- Markov assumption: each state is dependent only on the previous one
 - dependency given by a conditional probability:

$$p(\mathbf{x}_t|\mathbf{x}_{t-1})$$

- The above is actually a first-order Markov chain
- An N'th-order Markov chain:

$$p(\mathbf{x}_t|\mathbf{x}_{t-1},\ldots,\mathbf{x}_{t-N})$$

Markov Chain Example: Text "A dog is a man's best friend. It's a dog eat dog world out there." 1/3 1/3 1/3 dog 1/3 is man's best \mathbf{x}_{t-1} friend $p(\mathbf{x}_t|\mathbf{x}_{t-1})$ eat world out there ťs

Text synthesis

Create plausible looking poetry, love letters, term papers, etc.

Most basic algorithm

- 1. Build probability histogram
 - find all blocks of N consecutive words/letters in training documents
 - compute probability of occurance $p(\mathbf{x}_t|\mathbf{x}_{t-1},\dots,\mathbf{x}_{t-(n-1)})$
- 2. Given words $\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_{k-1}$ compute \mathbf{x}_k by sampling from $p(\mathbf{x}_t|\mathbf{x}_{t-1},\dots,\mathbf{x}_{t-(n-1)})$

Example on board...

[Scientific American, June 1989, Dewdney]

"I Spent an Interesting Evening Recently with a Grain of Salt"

- Mark V. Shaney

(computer-generated contributor to UseNet News group called net.singles)

Output of 2nd order word-level Markov Chain after training on 90,000 word philosophical essay:

"Perhaps only the allegory of simulation is unendurable--more cruel than Artaud's Theatre of Cruelty, which was the first to practice deterrence, abstraction, disconnection, deterritorialisation, etc.; and if it were our own past. We are witnessing the end of the negative form. But nothing separates one pole from the very swing of voting "rights" to electoral...

Modeling Texture

What is texture?

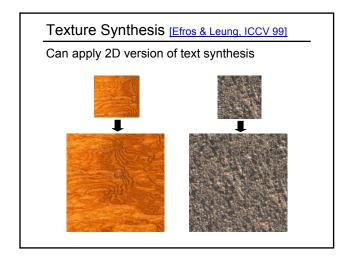
- · An image obeying some statistical properties
- · Similar structures repeated over and over again
- · Often has some degree of randomness

Markov Random Field

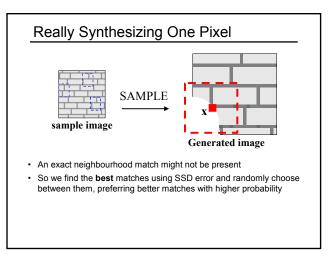
A Markov random field (MRF)

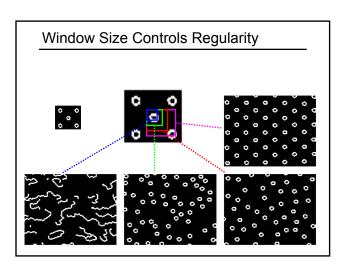
• generalization of Markov chains to two or more dimensions.

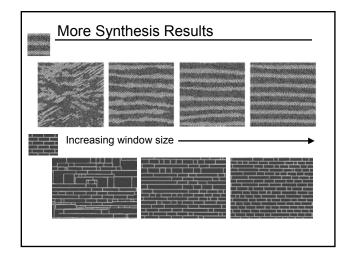
First-order MRF:

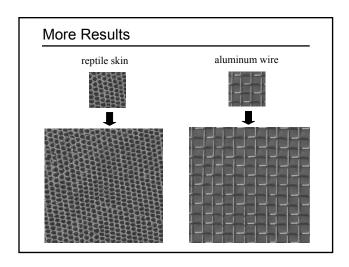

 probability that pixel X takes a certain value given the values of neighbors A, B, C, and D:

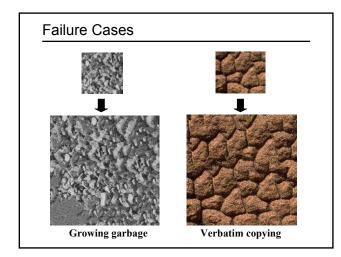
P(X|A, B, C, D) D X B C

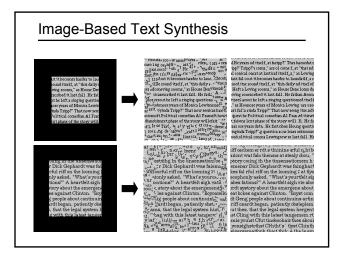

Higher order MRF's have larger neighborhoods

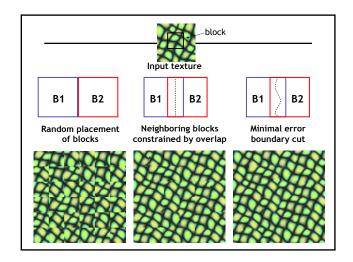


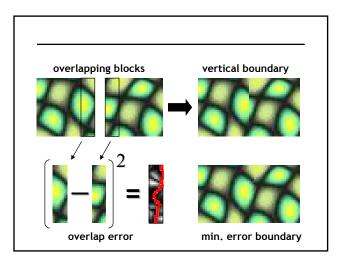


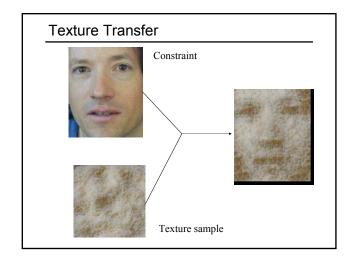

Synthesizing One Pixel input image what is $P(\mathbf{x}|\text{neighborhood of pixels around x})$? Find all the windows in the image that match the neighborhood consider only pixels in the neighborhood that are already filled in To synthesize \mathbf{x} pick one matching window at random assign \mathbf{x} to be the center pixel of that window Slides courtesy of Alvosha Efros





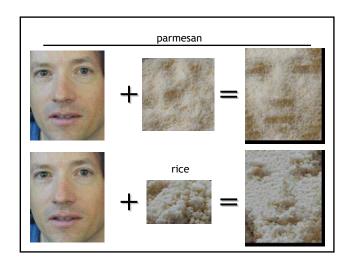


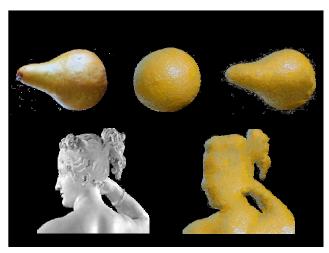


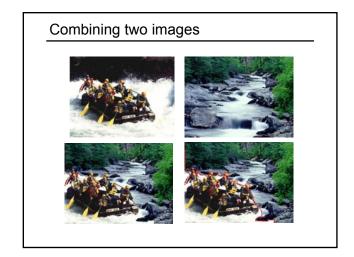

Speed

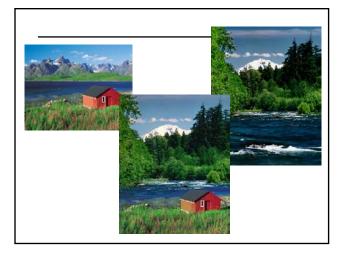
- Given: image of k² pixels
- Output: image of n2 pixels
- how many window comparisons does this algorithm require?

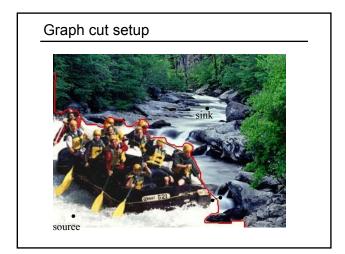
Block-based texture synthesis Synthesizing a block Observation: neighbor pixels are highly correlated Idea: unit of synthesis = block Exactly the same but now we want P(B|N(B)) Much faster: synthesize all pixels in a block at once

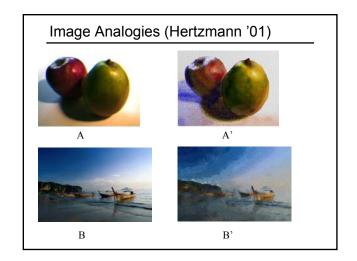


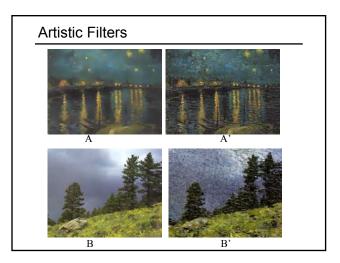


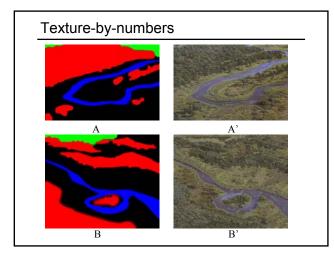

Texture Transfer Take the texture from one image and "paint" it onto another object Same algorithm as before with additional term


• do texture synthesis on image1, create new image (size of image2)


· add term to match intensity of image2







Graph cut texture synthesis: Video

Other applications of Image Analogies

- Texture synthesis
- Super-resolution
- · Texture transfer
- Image colorization
- Simple filters (blur, emboss)
- More details: Hertzmann et al., SIGGRAPH 2001
 - http://mrl.nyu.edu/projects/image-analogies/

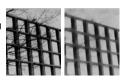
Applications of Texture Modeling

Super-resolution

- Freeman & Pasztor, 1999
- Baker & Kanade, 2000

Image/video compression Texture recognition,

segmentation


• <u>DeBonet</u>

Restoration

- · removing scratches, holes, filtering
- Zhu et al.

Art/entertainment

