Image Sampling

Moire patterns
http://www.sandlotscience.com/Moire/Moire Frm.htm

Image Scaling

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?

Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called image sub-sampling

Why does this look so crufty?
Even worse for synthetic images

Sampling and the Nyquist rate

Aliasing can arise when you sample a continuous signal or image
- occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- formally, the image contains structure at different scales—called “frequencies” in the Fourier domain
- the sampling rate must be high enough to capture the highest frequency in the image

To avoid aliasing:
- sampling rate ≥ 2 * max frequency in the image
 - said another way: at least two samples per cycle
- This minimum sampling rate is called the Nyquist rate

2D example

Subsampling with Gaussian pre-filtering

Solution: filter the image, then subsample
- Filter size should double for each ½ size reduction. Why?
Subsampling with Gaussian pre-filtering

Solution: filter the image, then subsample
- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Compare with...

Moire patterns in real-world images. Here are comparison images by Dave Etchells of Imaging Resource using the Canon D60 (with an anti-alias filter) and the Sigma SD-9 (which has no anti-alias filter). The bands below the fur in the image at right are the kinds of artifacts that appear in images when no anti-alias filter is used. Sigma chose to eliminate the filter to get more sharpness, but the resulting apparent detail may or may not reflect features in the image.

Some times we want many resolutions

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision
- We’ll talk about these later in the course
Gaussian pyramid construction

Repeat
• Filter
• Subsample
Until minimum resolution reached
• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Image resampling

So far, we considered only power-of-two subsampling
- What about arbitrary scale reduction?
- How can we increase the size of the image?

Recall how a digital image is formed
\[F[x, y] = \text{quantize}\{f(xd, yd)\} \]
- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

2.5
\[d = 1 \] in this example

Image reconstruction

• Convert \(f \) to a continuous function
 \[f_s(x) = F(\frac{x}{s}) \] when \(s \) is an integer, 0 otherwise
• Reconstruct by cross-correlation:
 \[f = h \otimes f_s \]
Resampling filters

What does the 2D version of this hat function look like?

![Hat function diagram]

Better filters give better resampled images
- Bicubic is common choice
 - Fit 3rd degree polynomial surface to pixels in neighborhood
 - Can also be implemented by a convolution

Bilinear interpolation

A simple method for resampling images

![Bilinear interpolation formula]

Things to take away from this lecture

Things to take away from image processing lecture
- An image as a function
- Digital vs. continuous images
- Image transformation: range vs. domain
- Types of noise
- LSI filters
 - Cross-correlation and convolution
 - Properties of LSI filters
 - Mean, Gaussian, bilinear filters
- Median filtering
- Image scaling
- Image resampling
- Aliasing
- Gaussian pyramids
- Bilinear interpolation