Announcements

- · Project 1 grades out
- Project 2 artifact voting today
- Project 3 questions

Projective geometry

- Readings

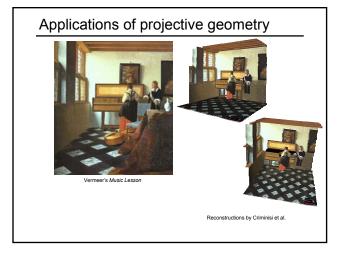
 Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1-23.5, 23.10)

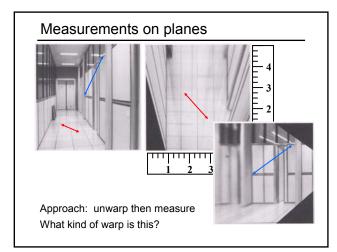
 available online: http://www.cs.cmu.edu/~pb/869/papers/zisser-mundy.pdf

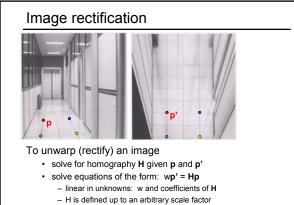
Projective geometry—what's it good for?

Uses of projective geometry

- Drawing
- Measurements
- · Mathematics for projection
- · Undistorting images
- · Focus of expansion
- · Camera pose estimation, match move
- · Object recognition







- how many points are necessary to solve for H?

work out on board

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ y_i' \\ \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \\ h_{22} \end{bmatrix}$$

Solving for homographies

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ \vdots & \vdots \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -x_n'y_n & -x_n' \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & -y_n' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{10} \\ h_{12} \\ h_{12} \\ h_{12} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Defines a least squares problem: $\quad \text{minimize } \|Ah - 0\|^2$

- Old trick we used in Lukas-Kanade: solve $\mathbf{A}^T\mathbf{A}\mathbf{h} = \mathbf{A}^T\mathbf{0}$
- Problem: this gives a solution of h=0
- Since \boldsymbol{h} is only defined up to scale, solve for unit vector $\boldsymbol{\hat{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with smallest eigenvalue
- · Works with 4 or more points

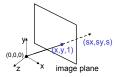
The projective plane

Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space



• Each point (x,y) on the plane is represented by a ray (sx,sy,s)

all points on the ray are equivalent: (x, y, 1)

 (sx, sy, s)

Projective lines

What does a line in the image correspond to in projective space?

• A line is a plane of rays through origin

- all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• A line is also represented as a homogeneous 3-vector I

Point and line duality

- · A line I is a homogeneous 3-vector
- It is \perp to every point (ray) ${\bf p}$ on the line: ${\bf l} \ {\bf p}$ =0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

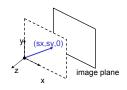
What is the intersection of two lines I_1 and I_2 ?

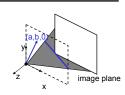
• $p \text{ is } \perp \text{ to } I_1 \text{ and } I_2 \implies p = I_1 \times I_2$

Points and lines are dual in projective space

• given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines





Ideal point ("point at infinity")

- $p \cong (x, y, 0)$ parallel to image plane
- · It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- · Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

Computed by 3x3 matrix multiplication

- To transform a point: p' = Hp
- To transform a line: Ip=0 → I'p'=0
 - $-0 = Ip = IH^{-1}Hp = IH^{-1}p' \Rightarrow I' = IH^{-1}$
 - lines are transformed by postmultiplication of H-1

3D projective geometry

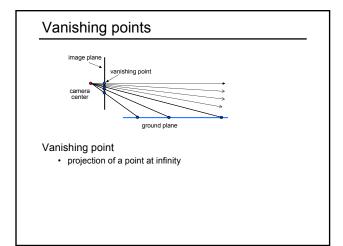
These concepts generalize naturally to 3D

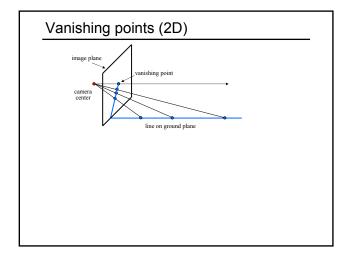
- · Homogeneous coordinates
- Projective 3D points have four coords: P = (X,Y,Z,W)
- Duality
 - A plane **N** is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- · Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T-1

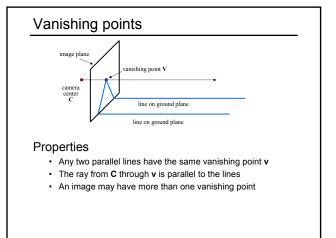
3D to 2D: "perspective" projection

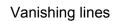
What is not preserved under perspective projection?

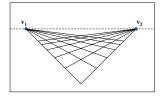
What IS preserved?







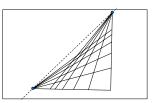




Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
 also called vanishing line
- · Note that different planes define different vanishing lines

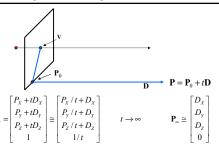
Vanishing lines



Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
 - also called vanishing line
- · Note that different planes define different vanishing lines

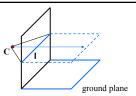
Computing vanishing points



Properties $v = \Pi P_{\infty}$

- P_∞ is a point at *infinity*, v is its projection
 They depend only on line *direction*
- Parallel lines \mathbf{P}_0 + t \mathbf{D} , \mathbf{P}_1 + t \mathbf{D} intersect at \mathbf{P}_{∞}

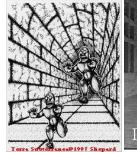
Computing vanishing lines

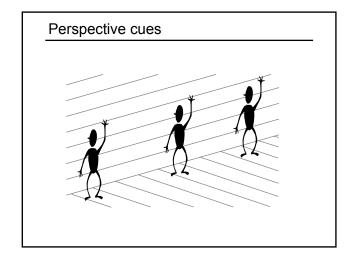


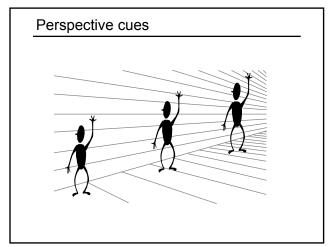
Properties

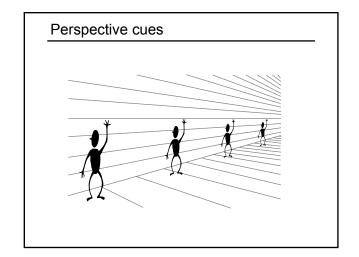
- I is intersection of horizontal plane through C with image plane
- · Compute I from two sets of parallel lines on ground plane
- All points at same height as \boldsymbol{C} project to \boldsymbol{I}
 - points higher than C project above I
- · Provides way of comparing height of objects in the scene

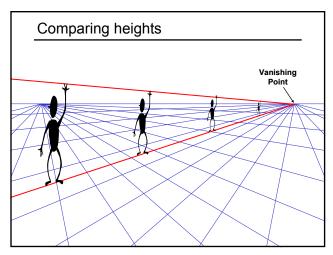
Fun with vanishing points

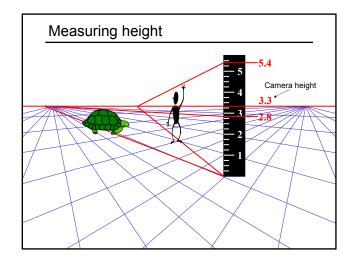




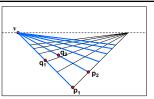








Computing vanishing points (from lines)



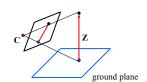
Intersect p₁q₁ with p₂q₂

$$v = (p_1 \times q_1) \times (p_2 \times q_2)$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler



Compute Z from image measurements

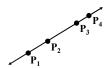
· Need more than vanishing points to do this

The cross ratio

A Projective Invariant

Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points



$$\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|} \qquad \mathbf{P}_{i} = \begin{bmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{bmatrix}$$

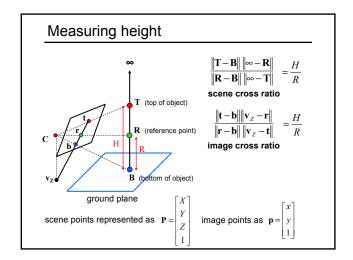
$$\mathbf{P}_{i} = \begin{vmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{vmatrix}$$

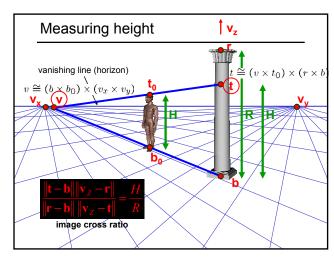
Can permute the point ordering

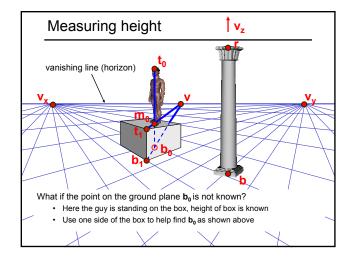
$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry







Computing (X,Y,Z) coordinates Okay, we know how to compute height (Z coords) • how can we compute X, Y?

3D Modeling from a photograph

Camera calibration

Goal: estimate the camera parameters

· Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_{_{1}} = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T = \boldsymbol{v}_{_{X}}$ (X vanishing point)
- similarly, $\boldsymbol{\pi}_2 = \boldsymbol{v}_Y$, $\boldsymbol{\pi}_3 = \boldsymbol{v}_Z$
- $\pi_4 = \Pi[0 \quad 0 \quad 0 \quad 1]^T = \text{projection of world origin}$

$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

Not So Fast! We only know v's up to a scale factor

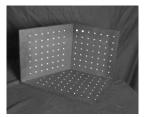
$$\mathbf{\Pi} = \begin{bmatrix} a \, \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & \mathbf{o} \end{bmatrix}$$

· Can fully specify by providing 3 reference points

Calibration using a reference object

Place a known object in the scene

- · identify correspondence between image and scene
- · compute mapping from scene to image



Issues

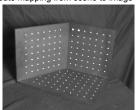
- · must know geometry very accurately
- must know 3D->2D correspondence

Chromaglyphs

Estimating the projection matrix

Place a known object in the scene

- · identify correspondence between image and scene
- · compute mapping from scene to image



$$\begin{bmatrix} u_i \\ v_j \\ 1 \end{bmatrix} \cong \left[\begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \right] \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Z_i \\ 1 \end{bmatrix}$$

$$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

$$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

$$\begin{bmatrix} X_i & Y_i & Z_i & 1 & 0 & 0 & 0 & n_iX_i & n_iY_i & n_iZ_i & n_i \\ 0 & 0 & 0 & 0 & X_i & Y_i & Z_i & 1 & -n_iX_i & -n_iY_i & -n_iZ_i & -n_i \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Direct linear calibration

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & \vdots \\ X_n & Y_p & Z_n & 1 & 0 & 0 & 0 & 0 & -u_nX_n & -u_nY_p & -u_nZ_n & -u_p \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_pY_n & -v_nZ_n & -v_n \\ \end{bmatrix} \begin{bmatrix} m_{01} \\ m_{02} \\ m_{11} \\ m_{12} \\ m_{22} \\ m_{21} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Can solve for m_{ij} by linear least squares

• use eigenvector trick that we used for homographies

Direct linear calibration

Advantage:

· Very simple to formulate and solve

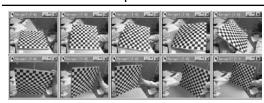
Disadvantages:

- · Doesn't tell you the camera parameters
- · Doesn't model radial distortion
- · Hard to impose constraints (e.g., known focal length)
- · Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
 - e.g., variants of Newton's method (e.g., Levenberg Marquart)

Alternative: multi-plane calibration



Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- · Only requires a plane
- · Don't have to know positions/orientations
- · Good code available online!
 - Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 - Matlab version by Jean-Yves Bouget:
 - http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/

Some Related Techniques

Image-Based Modeling and Photo Editing

- Mok et al., SIGGRAPH 2001
- http://graphics.csail.mit.edu/ibedit/

Single View Modeling of Free-Form Scenes

- Zhang et al., CVPR 2001
- http://grail.cs.washington.edu/projects/svm/

Tour Into The Picture

- · Anjyo et al., SIGGRAPH 1997
- http://koigakubo.hitachi.co.jp/little/DL_TipE.html