
1

Motion Estimation

Today’s Readings
• Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199)
• Numerical Recipes (Newton-Raphson), 9.4 (first four pages)

– http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

http://www.sandlotscience.com/Distortions/Breathing_objects.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Why estimate motion?
Lots of uses

• Track object behavior
• Correct for camera jitter (stabilization)
• Align images (mosaics)
• 3D shape reconstruction
• Special effects

Optical flow Problem definition: optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy: a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion: points do not move very far

This is called the optical flow problem

2

Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
• brightness constancy: Q: what’s the equation?

• small motion: (u and v are less than 1 pixel)
– suppose we take the Taylor series expansion of I:

Optical flow equation
Combining these two equations

In the limit as u and v go to zero, this becomes exact

Optical flow equation

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?
• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

3

Aperture problem Solving the aperture problem
How to get more equations for a pixel?

• Basic idea: impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version
How to get more equations for a pixel?

• Basic idea: impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Lukas-Kanade flow
Prob: we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)

– described in Trucco & Verri reading

Solution: solve least squares problem
• minimum least squares solution given by solution (in d) of:

4

Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

Eigenvectors of ATA

Suppose (x,y) is on an edge. What is ATA? derive on board

• gradients along edge all point the same direction
• gradients away from edge have small magnitude

• is an eigenvector with eigenvalue
• What’s the other eigenvector of ATA?

– let N be perpendicular to

– N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude

Edge

– large gradients, all the same
– large λ1, small λ2

Low texture region

– gradients have small magnitude
– small λ1, small λ2

5

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

Observation
This is a two image problem BUT

• Can measure sensitivity by just looking at one of the images!
• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...

Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?

• Can solve using Newton’s method
– Also known as Newton-Raphson method
– Today’s reading (first four pages)

» http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

• Approach so far does one iteration of Newton’s method
– Better results are obtained via more iterations

Improving accuracy
Recall our small motion assumption

This is not exact
• To do better, we need to add higher order terms back in:

This is a polynomial root finding problem
1D case
on board

6

Iterative Refinement
Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques
3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?

Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

7

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Optical flow result

David Dewey morph

Motion tracking
Suppose we have more than two images

• How to track a point through all of the images?

Feature Tracking
• Choose only the points (“features”) that are easily tracked
• How to find these features?

– In principle, we could estimate motion between each pair of
consecutive frames

– Given point in first frame, follow arrows to trace out it’s path
– Problem: DRIFT

» small errors will tend to grow and grow over time—the point will
drift way off course

– windows where has two large eigenvalues

• Called the Harris Corner Detector

Feature Detection

8

Tracking features
Feature tracking

• Compute optical flow for that feature for each consecutive H, I

When will this go wrong?
• Occlusions—feature may disappear

– need mechanism for deleting, adding new features
• Changes in shape, orientation

– allow the feature to deform
• Changes in color
• Large motions

– will pyramid techniques work for feature tracking?

Handling large motions
L-K requires small motion

• If the motion is much more than a pixel, use discrete search instead

• Given feature window W in H, find best matching window in I
• Minimize sum squared difference (SSD) of pixels in window

• Solve by doing a search over a specified range of (u,v) values
– this (u,v) range defines the search window

Tracking Over Many Frames
Feature tracking with m frames

1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. i = i + 1
5. If i < m, go to step 2

Issues
• Discrete search vs. Lucas Kanade?

– depends on expected magnitude of motion
– discrete search is more flexible

• Compare feature in frame i to i+1 or frame 1 to i+1?
– affects tendency to drift..

• How big should search window be?
– too small: lost features. Too large: slow

Incorporating Dynamics
Idea

• Can get better performance if we know something about the
way points move

• Most approaches assume constant velocity

or constant acceleration

• Use above to predict position in next frame, initialize search

9

Feature tracking demo

MPEG—application of feature tracking
• http://www.pixeltools.com/pixweb2.html

Oxford video

Image alignment

Goal: estimate single (u,v) translation for entire image
• Easier subcase: solvable by pyramid-based Lukas-Kanade

Application: Rotoscoping (demo)

