Motion Estimation

http://www.sandlotscience.com/Distortions/Breathing objects.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Today’s Readings
+ Trucco & Verri, 8.3 — 8.4 (skip 8.3.3, read only top half of p. 199)
Numerical Recipes (Newton-Raphson), 9.4 (first four pages)
— http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

Why estimate motion?

Lots of uses
« Track object behavior
+ Correct for camera jitter (stabilization)
Align images (mosaics)
« 3D shape reconstruction
« Special effects

Optical flow

Problem definition: optical flow
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How to estimate pixel motion from image H to image 1?
« Solve pixel correspondence problem

— given a pixel in H, look forpixels of the inl
Key assumptions
« color constancy: a pointin H looks the same in |

— For grayscale images, this is brightness constancy
« small motion: points do not move very far

This is called the optical flow problem




Optical flow constraints (grayscale images)
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Let’s look at these constraints more closely
+ brightness constancy: Q: what’s the equation?

« small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of |:
p = . al, ar, 5
I(x+u, y+v) = I(2, y)—{—mu—l—wu—i—hugher order terms

~ Iz y)+ %u + %v

Optical flow equation

Combining these two equations
O=1I(z+u,y+v)— H(z,y)
= I(x,y) + Lew + Iyv — H(z, y)
= (I(x,y) — H(z.y)) + Lru+ Iyv
Iy + Iyu + Iyv
~ I+ VI [u ]

In the limit as u and v go to zero, this becomes exact
0=1+VI-[§ %

shorthand: I, = 9L
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Optical flow equation

O=IL+VI-[uv]
Q: how many unknowns and equations per pixel?
Intuitively, what does this constraint mean?

» The component of the flow in the gradient direction is determined
» The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem




Aperture problem

Solving the aperture problem

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!
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RGB version

How to get more equations for a pixel?
« Basicidea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!
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Lukas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad—b[?
25x2 2x1 25x1

Solution: solve least squares problem
* minimum least squares solution given by solution (in d) of:

(ATA) d=ATo

2x2 2x1 2x1

SLly Shily || v > Iyl
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« The summations are over all pixels in the K x K window
« This technique was first proposed by Lukas & Kanade (1981)
— described in Trucco & Verri reading




Conditions for solvability

» Optimal (u, v) satisfies Lucas-Kanade equation

>l le]y u | > LIy
N ly Iyl v | | Sk

AT A ATy

When is This Solvable?
» ATA should be invertible
» ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
» ATA should be well-conditioned
— A4/ A, should not be too large (A, = larger eigenvalue)

Eigenvectors of ATA

Ty | lele Tlely | _ I _ q
Ala= [ Sn1, So | = 3 I, [ Iy] = > VI(VI)
Suppose (x,y) is on an edge. What is ATA? derive on board
« gradients along edge all point the same direction
« gradients away from edge have small magnitude
(Cvivn") = kvivi”
>ovivn"yvi=wvi|?vI
+ VIis an eigenvector with eigenvalue &V I||?
« What's the other eigenvector of ATA?
— let N be perpendicular to V1

(Cvivn")n=0

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude

S vivn®
— large gradients, all the same
—large A4, small A,

Low texture region

S vivn®
— gradients have small magnitude
—small A, small A,




High textured region

S vivn? N
— gradients are different, large magnitudes
—large A4, large A,

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!
« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
« Suppose there is not much noise in the image

When our assumptions are violated
« Brightness constancy is not satisfied
* The motion is not small
* A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

Improving accuracy

Recall our small motion assumption
0=1I(x~+u,y+v)—H(zy)
e I(2, y) 4+ Ivw + Tyv — H(z, y)
This is not exact
« To do better, we need to add higher order terms back in:
= I(z,y) + Izu + Iyv + higher order terms — H (2, )

This is a polynomial root finding problem
+ Can solve using Newton’s method 1D case
— Also known as Newton-Raphson method on board
— Today's reading (first four pages)
» http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf
« Approach so far does one iteration of Newton’s method
— Better results are obtained via more iterations




Iterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?
« Probably not—it's much larger than one pixel (2" order terms dominate)
* How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

u=10 pixels!

Gaussian pyramid of image H Gaussian pyramid of image |




Coarse-to-fine optical flow estimation Optical flow result

-._. run iterative L-K —

Iwarp & upsample

- —=* runiterative L-K +——

David Dewey morph

Gaussian pyramid of image H Gaussian pyramid of image |

Motion tracking Feature Detection

Suppose we have more than two images
« How to track a point through all of the images? Pregis 1 o
— In principle, we could estimate motion between each pair of " B o
consecutive frames Mot o9 oo
— Given point in first frame, follow arrows to trace out it’s path o 1 NS &S ;‘ SLENA
— Problem: DRIFT o - o o
» small errors will tend to grow and grow over time—the point will a
drift way off course o
208 ¥ o ,000
Feature Tracking o 0l %0
« Choose only the points (“features”) that are easily tracked | Jant? . F \a o S AT o,
. o b 9a = 9 oo
» How to find these features? b o0 3 golee
o O '
— windows where > VI(VI)T has two large eigenvalues =M o 4 3 5. all| e :
ki o o g, & a
+ Called the Harris Corner Detector = ° . o




Tracking features

Handling large motions

Feature tracking
» Compute optical flow for that feature for each consecutive H, |

When will this go wrong?
» Occlusions—feature may disappear
— need mechanism for deleting, adding new features
« Changes in shape, orientation
— allow the feature to deform
« Changes in color
+ Large motions
— will pyramid techniques work for feature tracking?

L-K requires small motion
« If the motion is much more than a pixel, use discrete search instead
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H(z,y) I(z,y)

« Given feature window W in H, find best matching window in |
« Minimize sum squared difference (SSD) of pixels in window

T (4 ) > Iz 4wy +v)— H(a, )2
(zy)eW

« Solve by doing a search over a specified range of (u,v) values
— this (u,v) range defines the search window

Tracking Over Many Frames

Incorporating Dynamics

Feature tracking with m frames
1. Select features in first frame
2. Given feature in frame i, compute position in i+1
3. Select more features if needed
4. i=i+1
5. Ifi<m, gotostep 2

Issues
« Discrete search vs. Lucas Kanade?
— depends on expected magnitude of motion
— discrete search is more flexible

*  Compare feature in frame i to i+1 or frame 1 to i+1?
— affects tendency to drift..

* How big should search window be?
— too small: lost features. Too large: slow

Idea

« Can get better performance if we know something about the
way points move
« Most approaches assume constant velocity

Xit1 = X
Xi41 = 2%, — X
or constant acceleration
Xi41 = X;
Xi41 = 3%, —3%_1 + X2

« Use above to predict position in next frame, initialize search




Feature tracking demo Image alignment
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Oxford video

MPEG—application of feature tracking
* http://www.pixeltools.com/pixweb2.html
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Goal: estimate single (u,v) translation for entire image
« Easier subcase: solvable by pyramid-based Lukas-Kanade

Application: Rotoscoping (demo)




