Image filtering

1

3

Reading

Forsyth & Ponce, chapter 7

Images as functions

We can think of an **image** as a function, f, from R^2 to R:

- *f*(*x*, *y*) gives the **intensity** at position (*x*, *y*)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 f: [*a*,*b*]x[*c*,*d*] → [0,1]

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Images as functions

What is a digital image?

In computer vision we usually operate on **digital** (**discrete**) images:

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

 $f[i, j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$

The image can now be represented as a matrix of integer values

Image processing

An **image processing** operation typically defines a new image g in terms of an existing image f.

We can transform either the domain or the range of *f*.

Range transformation:

$$g(x,y) = t(f(x,y))$$

What's kinds of operations can this perform?

Image processing

Some operations preserve the range but change the domain of f:

 $g(x,y) = f(t_x(x,y), t_y(x,y))$

What kinds of operations can this perform?

Image processing Still other operations operate on both the domain and the range of f. 10

Noise

Image processing is useful for noise reduction...

Impulse noise

Common types of noise:

- Salt and pepper noise: contains random occurrences of black and white pixels
- ٠ Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn ٠ from a Gaussian normal distribution

Practical noise reduction

How can we "smooth" away noise in a single image?

	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	100	130	110	120	110	0	0
	0	0	0	110	90	100	90	100	0	0
	0	0	0	130	100	90	130	110	0	0
	0	0	0	120	100	130	110	120	0	0
	0	0	0	90	110	80	120	100	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
14										

Effect of mean filters

Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

H is called the "filter," "kernel," or "mask."

The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]

Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

It is written: $G = H \star F$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide) What will G look like?

24

Comparison: salt and pepper noise

Comparison: Gaussian noise

