Announcements

- Mailing list: csep576@cs.washington.edu
- you should have received messages
- Project 1 out today (due in two weeks)
- Carpools

Edge Detection

From Sandlot Science

Today's reading

- Forsyth, chapters 8, 15.1

Edge detection

Convert a 2D image into a set of curves

- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Edge detection

How can you tell that a pixel is on an edge?

The discrete gradient

How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?

Image gradient

The gradient of an image:

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f^{-}}{\partial y}\right.
$$

The gradient points in the direction of most rapid change in intensity
$\vec{\longrightarrow} \quad \nabla f=\left[\frac{\partial f}{\partial r}, 0\right]$

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

The discrete gradient

How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f}{\partial x}[x, y] \approx F[x+1, y]-F[x, y]
$$

How would you implement this as a cross-correlation?

H

The Sobel operator

Better approximations of the derivatives exist

- The Sobel operators below are very commonly used

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

s_{x}

$s y$

- The standard defn. of the Sobel operator omits the $1 / 8$ term
- doesn't make a difference for edge detection
- the $1 / 8$ term is needed to get the right gradient value, however

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

$$
\frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f
$$

This saves us one operation:

The Canny edge detector

norm of the gradient

Non-maximum suppression

Check if pixel is local maximum along gradient direction

- requires checking interpolated pixels p and r

The Canny edge detector

thinning
(non-maximum suppression)

Effect of σ (Gaussian kernel spread/size)

Canny with $\sigma=1$
Canny with $\sigma=2$

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Edge detection by subtraction

smoothed (5×5 Gaussian)

An edge is not a line...

How can we detect lines?

Finding lines in an image

Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

- Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to?
- A: the solutions of $b=-x_{0} m+y_{0}$
- this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Hough transform algorithm

Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

1. Initialize $\mathrm{H}[\mathrm{d}, \theta]=0$
2. for each edge point $I[x, y]$ in the image for $\theta=0$ to 180
$d=x \cos \theta+y \sin \theta$
$H[d, \theta]+=1$
3. Find the value(s) of (d, θ) where $\mathrm{H}[\mathrm{d}, \theta]$ is maximum
4. The detected line in the image is given by $d=x \cos \theta+y \sin \theta$

What's the running time (measured in \# votes)?

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $\mathrm{I}[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y)
$H[d, \theta]+=1$
3. same
4. same

What's the running time measured in votes?

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $\mathrm{I}[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. same
4. same

What's the running time measured in votes?

Extension 2

- give more votes for stronger edges

Extension 3

- change the sampling of (d, θ) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other shape

