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First: course logistics
• This talk is a bonus!


• Current state-of-the-art in LM training.


• Not explicitly graded on this. 

• Second half will be regular course content


• Will have stuff that can be asked in assignments. 

• Assignment-wise:


• Programming assignment 4 due in 2 days!


• Written assignment 2 should be out soon (not sure exact time)
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What is this talk about?
• Introduction to RL for LMs


• Assume very basic prior knowledge: basic idea about RL, know roughly 
what an LM is.


• We will cover:


• Policy gradient basics


• PPO/GRPO basics


• Current tricks for LMs and policy gradient (DAPO, CISPO, GSPO…)


• Olmo 3 Results (If time)



What is an LM?



What is an LM?

figure credit: Xiaochuang Han



How to make an LM?

Base Model

“Pre-training”

7
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How to make an LM? Pretraining data.
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https://x.com/srush_nlp/status/1633509903611437058

<- TBH higher these days

How to make an LM? Pretraining data.
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current token past tokens

How to make an LM? Pretraining objective.
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From OpenAI GPT-2 Release: https://openai.com/index/better-language-models/

How to make an LM? Pretraining behaviour.



How to make an LM?

Base Model

Post-trained 
Model

“Pre-training”

“Post-training”
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How to make an LM? Post-training.

Follow natural language 
instructions

Be aware of harmful 
behaviors

Respond according to 
human preference

Improve core skills

slide credit to Nathan Lambert
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What is 2+2?

Also, can you solve (2+2+1+1)÷12? What is 
2+2+2? If (n+2)!/n! = 12, what is the value of n? 
What is (2-2)*2-2+2+2/2? How do you solve 
2+2+2 ?+2 =212? What is (2+2+2)! ? What is 
2-2+2×2^2? What is 2/2/(2/2)? Why is 2*2-2=2?
\n\nLet's go through each of these step by step:
\n\n1. **2+2**:  \n   \\( 2 + 2 = 4 \\).\n\n2. 
**(2+2+1+1) ÷ 12**:

Why post-train?
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Q: What is 2+2? A:

Four. But when you differentiate it, it becomes 0. 
## 假定你在以多高的速度移 才能追上光？ 

299,792,458米）
是宇宙中的速度极限，任何具有 量的物体都无法
到或超 个速度。

Why post-train?
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What is 2+2?

2 + 2 equals 4.

+ “post-training”

Why post-train?
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Post-training = a bag of techniques for adapting



Reinforcement Learning is a big one!
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Why do we need RL for LMs?
• Maximising things that are hard to maximise with next-token loss (e.g., 

preference learning)

1.	Go on a hike


	2.	Go to some coffee shops…
Skip the Coffee Shops and don’t 
pack for rain

What Should I do in Seattle?

uhhhh…. Oh, the right one!

💁 💁



Why do we need RL for LMs?
• Maximising things that are hard to 

maximise with next-token loss.


• Train the model on distributions 
that better match its output 
(“distribution drift”).

Source: https://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-2.pdf



Why do we need RL for LMs?
• Maximising things that are hard to 

maximise with next-token loss.


• Train the model on distributions that 
better match its output (“distribution 
drift”).


• Train in a “real” inference 
environment (vLLM != HF).

Source: https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-
RL-Collapse-from-the-Training-Inference-
Mismatch-271211a558b7808d8b12d403fd15edda



Why do we need RL for LMs?
• Maximising things that are hard to 

maximise with next-token loss.


• Train the model on distributions that 
better match its output (“distribution 
drift”).


• Allows us to go beyond bound of 
teacher data.

Source: Silver, David et al. “Mastering the game of Go without human 
knowledge.” Nature 550 (2017): 354-359.



How do we do RL for LMs?
• Current approaches are all based on policy gradient.


• Why? 

• Developed at OpenAI, OpenAI popularised RL for LMs.


• Was the main ‘go-to’ approach in past few years.


• Easier(?) to adapt to LMs: our LM is our policy, and we 
directly train that.


• Policy gradient vs off-policy approaches (DQN, SAC) is 
an ongoing debate in RL-land.



How do we do RL for LMs?

source: https://www.arxiv.org/abs/2508.01329

• Current approaches are all based on policy gradient.


• Why? 

• Developed at OpenAI, OpenAI popularised RL for LMs.


• Was the main ‘go-to’ approach in past few years.


• Easier(?) to adapt to LMs: our LM is our policy, and we 
directly train that.


• Policy gradient vs off-policy approaches (DQN, SAC) is 
an ongoing debate in RL-land.



Policy Gradient



A crash course on policy gradient
For this, we consider a parameterised policy: a policy that can directly select 
what action to take, without necessarily consulting value (or q-) functions.

Effectively, we learn to produce a probability distribution over actions given 
a state.

πθ(a |s) =

 can be anything we can take gradients on! …like a LM!πθ



A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)



A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)

More basic details on gradient steps in a 
bit!


Basically just: if we take these steps, we 
will lower the loss associated with J(θ) 



slide credit: https://introtodeeplearning.com/2018/materials/2018_6S191_Lecture1.pdf

https://introtodeeplearning.com/2018/materials/2018_6S191_Lecture1.pdf


A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)
 here is our objective function. We will set it as the ‘true’ value of the initial 

state under our policy:
J(θ)

J(θ) = vπθ
(s0)



A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)
 here is our objective function. We will set it as the ‘true’ value of the initial 

state under our policy:
J(θ)

J(θ) = vπθ
(s0)

 is the value function for our parameterised policy, and  is the initial state.vπθ
s0

We could do simple gradient descent, but in practice we can plug into Adam, etc.



A crash course on policy gradient
With some math (see Sutton & Barto, Chap. 13), we can show:

∇J(θ) ∝ 𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Expectation 
under our 
policy Expected 

return 
(reward)

probability 
over next 
action



A crash course on policy gradient
With some math (see Sutton & Barto, Chap. 13), we can show:

∇J(θ) ∝ 𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Expectation 
under our 
policy Expected 

return 
(reward)

probability 
over next 
action

This is exactly the REINFORCE update!



REINFORCE: The full algorithm

Basically:

while True:
Generate a full episode (“rollout”) starting from  using s0 πθ
Compute reward over the rollouts
Compute the REINFORCE loss and apply gradient



How is this instantiated for LMs?

𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Gt = R(St, At)

𝔼πθ
[R(x, y)∇θln πθ(y |x)]

St = x
At = yt

We have some reward function

Our state is just the text seen so far
Our action is producing a token. 
Generating a full answer = episode.



How is this instantiated for LMs?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

In practice, we draw prompts (x) from a dataset (D), and sample completions (y) 
from our model, and do this in batches:



How is this instantiated for LMs?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

In practice, we draw prompts (x) from a dataset (D), and sample completions (y) 
from our model, and do this in batches:

reward logprobs of 
response

over 
responses

over 
prompts over 

batch



How is this instantiated for LMs?

slide credit: Hannaneh Hajishirzi



Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Issues:


• High variance


• Reward scale can cause issues… (consider neg. vs pos. reward)


• We can only use samples directly from our current loop



Baselining & Advantage



Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

(R(y, x) − b)∇θln πθ(y |x)



Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)



Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)
We call this form of normalising the advantage function:

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)



Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

We call this form of normalising the advantage function:

lowest poss. 
variance if we 

knew V exactly!

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)



Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)



Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

TD residual - “how much better than expected will we do taking a particular action”



TD Residual?
δt = rt + γ ̂V(st+1) − ̂V(st)

TD residual - “how much better than expected will we do taking a particular action”

This should be familiar…



TD Residual?

δt = rt + γ ̂V(st+1) − ̂V(st)



Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)
TD residual - “how much better than expected did we do?”

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)



Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)

̂At =
∞

∑
l=0

(γλ)l δV
t+l

TD residual - “how much better than expected did we do?”

note that γ is usually set to 1, λ to 0.95 for RL w/ LMs!
We also typically normalise the advantages within the 
batch (whitening)

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)



How to estimate advantage?
GRPO (Shao et al 2024): Use Group Estimates



How to estimate advantage?

Aj =
R(x, yj) − mean(RG)

std(RG)

No value estimation needed! Just take multiple samples per prompt and 
use average improvement over the group as advantage.

prompt (x)

y1

y2

y3

G

GRPO (Shao et al 2024): Use Group Estimates



How to estimate advantage?
RLOO (Ahmadian et al 2024): Use leave-one-out estimate



How to estimate advantage?

Aj = R(yj, x) −
1

G − 1 ∑
i≠j

R(y(i), x)

Use average of other samples from the same prompt.

prompt (x)

y1

y2

y3

G

RLOO (Ahmadian et al 2024): Use leave-one-out estimate



How to estimate advantage?
REINFORCE++ (Hu et al. 2025): Use batch estimate (no groups!)



How to estimate advantage?

Just normalise across everything in batch. Commonly done anyway 
(“whitening”).

prompt 2 (x)

y1

y2

y3

Aj =
R(x, yj) − mean(R)

std(R)
prompt 3 (x)

prompt 1 (x)

REINFORCE++ (Hu et al. 2025): Use batch estimate (no groups!)



How to estimate advantage?
VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates



How to estimate advantage?

No value estimation 
needed! Just take 
multiple samples per 
~token and use those!

prompt (x)

y1

y2

y3

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates



How to estimate advantage?

No value estimation 
needed! Just take 
multiple samples per 
~token and use those!

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates



A summary of advantage estimates

𝔼x∼D,y∼πθ(.|x)[(A(y, x)∇θlogπθ(y |x)]

source: VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment (Kazemnejad et al 2024)



Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Issues:


• High variance


• Reward scale can cause issues… (consider neg. vs pos. reward)


• We can only use samples directly from our current loop
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• High variance
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• We can only use samples directly from our current loop

✅

✅
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R(x, yi)∇θln πθ(yi |x)]



Going beyond REINFORCE

Issues:


• High variance


• Reward scale can cause issues… (consider neg. vs pos. reward)


• We can only use samples directly from our current loop

✅

✅

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]



Importance Sampling & Off-
Policy data



Revisiting REINFORCE

Cannot reuse old data! -> can we get more efficient?

What if we re-used our old data anyway? 


Well, our problem is we are doing our loss assuming sampling from our 
current policy…

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]



Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[ f(τ)] = 𝔼τ∼pβ[ pθ(τ)

pβ(τ)
f(τ)]



Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[ f(τ)] = 𝔼τ∼pβ[ pθ(τ)

pβ(τ)
f(τ)]

some function on 
trajectories over 
policy



Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[ f(τ)] = 𝔼τ∼pβ[ pθ(τ)

pβ(τ)
f(τ)]

some function on 
trajectories over 
policy Same function, but 

now we drawing 
trajectories from diff 
policy, and reweight 
accordingly!



Applying IS to REINFORCE
We can apply this directly to reinforce! Our distribution is just the older policy.

𝔼x∼D,y∼πθ(.|x) . . . ln πθ(yi |x)

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)



Applying IS to REINFORCE
We can apply this directly to reinforce! Our distribution is just the older policy.

𝔼x∼D,y∼πθ(.|x) . . . ln πθ(yi |x)

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)

problem: if the ratio 
gets too crazy, our 
estimate ‘blows’ up.



Applying IS to REINFORCE
Main fix: just stay within some “safe” region!

source: https://avandekleut.github.io/ppo/



TRPO: Keep within some KL constraint

s.t. 𝔼̂t [KL [πθold( ⋅ ∣ st), πθ( ⋅ ∣ st)]] ≤ δ

Don’t let the policy stray too far!


Requires some more complex techniques to solve…

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)

Schulman et al. 2016



PPO: just clip the ratio!
Use the same importance sampling technique:

But now just clip the ratio to avoid moving too far:

L = 𝔼̂ [min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]
Why min on top of clip? Because if the estimate would make advantage higher, 
its okay - we just want to be pessimistic about true advantage.

ri =
ln πθ(yi |x)

ln πθold
(yi |x)

Schulman et al. 2017



Standard PPO = REINFORCE+clip+advantage

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

ri =
ln πθ(yi |x)

ln πθold
(yi |x) Ai(x, y) = R(y, x) − ̂Vθ′￼

(x)



Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵlower,1 + ϵhigher) ̂Ai)]
DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.



Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵlower,1 + ϵhigher) ̂Ai)]
DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.

Basically: allow larger updates when raising token probabilities, but don’t further 
decrease the lower bound. 
Minimax paper goes further and sets  to infinity to avoid lower bound clipping!ϵlower



Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ), clip(ri(θ),1 − ϵlower,1 + ϵhigher)) ̂Ai]
CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.



Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ), clip(ri(θ),1 − ϵlower,1 + ϵhigher)) ̂Ai]
CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.

Basically: directly clip the ratio, to allow large advantages to still have some 
effect - even when lots of clipping might be happening.



Can we improve the IS further?
GSPO (Zheng et al 2025): use sequence-level importance sampling instead of 
token-level.

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (si(θ) ̂Ai, clip(si(θ),1 − ϵ,1 + ϵ) ̂Ai)]
si(θ) = ( πθ(yi ∣ x)

πθold
(yi ∣ x) )

1
|yi |

= exp( 1
|yi |

|yi|

∑
t=1

ln
πθ(yi ∣ x)

πθold
(yi ∣ x) )



Can we improve the IS further?
GSPO (Zheng et al 2025): use sequence-level importance sampling instead of 
token-level.

Basically: compute the importance ratio of the whole sequence, and then apply 
the same value to each token. Reduces noise of token-to-token.

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (si(θ) ̂Ai, clip(si(θ),1 − ϵ,1 + ϵ) ̂Ai)]
si(θ) = ( πθ(yi ∣ x)

πθold
(yi ∣ x) )

1
|yi |

= exp( 1
|yi |

|yi|

∑
t=1

ln
πθ(yi ∣ x)

πθold
(yi ∣ x) )



Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

A(x, yi)∇θln πθ(yi |x)]

Issues:


• High variance


• Reward scale can cause issues… (consider neg. vs pos. reward)


• We can only use samples directly from our current loop

✅

✅



Going beyond REINFORCE

Issues:


• High variance


• Reward scale can cause issues… (consider neg. vs pos. reward)
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✅

✅

✅

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]



Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

ri =
ln πθ(yi |x)

ln πθold
(yi |x) Ai(x, y) = R(y, x) − ̂Vθ′￼

(x)



One last detail: KL penalty
In practice, we sometime also apply a KL penalty to the reward:

However, these days often the KL penalty is completely removed. 
So, I’m going to skip over this.



source: https://spinningup.openai.com/en/latest/algorithms/ppo.html

Backing up to the full algorithm



Backing up to the full algorithm

slide credit: Hannaneh Hajishirzi



Backing up to the full algorithm

slide credit: Hannaneh Hajishirzi



Adapting for LMs



Adapting for LMs

1. LM inference is slow. How can we speed things up?


2. How do we deal with long sequences?


3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi



Speeding up inference.
Lots of work done on speeding up inference by great teams focussed on 
inference-only settings. Much of this can be applied in the RL setting!



Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and 
training! (Yao et al, 2025)

We are sampling via vllm, but computing our logprobs in our training code.



Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and 
training!

Is this problem familiar?



Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and 
training!
We apply the same solution as we did for training on old data: importance 
sampling!



Speeding up inference: logprob mismatch.
This can be the difference between collapse and success. 
Empirically, I find it more important the more off-policy you go.

source: Yao et al. 2025



Speeding up inference: logprob mismatch.
More recently: maybe just using FP32 precision for LM head works?

source: Minimax 2025



Speeding up inference: logprob mismatch.
More recently: maybe just using FP16 precision fixes all these issues???

only stable when:


1. FP32 vllm, 
BF16 training. 
 
2. FP16 vllm, 
FP16 training

source: Qi et al 2025



Speeding up inference: logprob mismatch.
Even more recently: maybe theres just bugs in the inference code????

source: https://x.com/RichardYRLi/status/1984858850143715759
source: Liu et al 2025



Speeding up inference: logprob mismatch.
Even more recently: maybe theres just bugs in the inference code????

😵💫



Speeding up inference: async RLHF
Let’s review the standard algorithm for PPO/REINFORCE:

while True:
Generate a full episode (“rollout”) starting from  using s0 πθ
Compute reward over the rollouts
Compute the loss and apply gradient (potentially mult. steps)



Speeding up inference: async RLHF
We can visualise this flow like:

Gen. GPUs

Train GPUs

Generating 
rollouts

compute 
logprobs

training
weight 
sync



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

IDLE

IDLE IDLE

IDLE



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 1: Overlap training and inference! This also makes our overall algorithm faster 
if we have enough compute!

Drawback: our inference is now 1 step off our training (off-policy). In practice, 
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 1: Overlap training and inference! This also makes our overall algorithm faster 
if we have enough compute!

Drawback: our inference is now 1 step off our training (off-policy). In practice, 
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 2: Overlap training and inference, and continuously generate samples when 
inference compute frees up.

What do we do with interrupted generations? Just recompute KV cache and then 
continue.



Speeding up inference: async RLHF

Fix 2: Overlap training and inference, and continuously generate samples when 
inference compute frees up.

This is exactly what AReal does!

source: Fu et al 2025



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 3: Overlap training and inference, and continuously generate samples when 
inference compute frees up, and don’t recompute KV cache!

Run a training step whenever we have a batch available.
Scalable wrt inference compute.



Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when 
inference compute frees up, and don’t recompute KV cache!

This technique was proposed by pipelineRL.

source: Piché et al 2025



Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when 
inference compute frees up, and don’t recompute KV cache!

This technique was proposed by pipelineRL. Requires being careful about 
multithreading!

source: https://x.com/finbarrtimbers/status/1973382120451060161



Adapting for LMs

1. LM inference is slow. How can we speed things up?


2. How do we deal with long sequences?


3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi

✅



Dealing with LM sequences
In practice, we have some maximum length we allow models to decode to.
This means some sequences will be unfinished.

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book 
Yeah, no worries!
We should go and do this other thing tha



Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book 
Yeah, no worries!
We should go and do this other thing tha

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish. 
Prevents penalising model for strategies that might be correct, but didn’t finish 
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop 
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k 
token range)



Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book 
Yeah, no worries!
We should go and do this other thing tha

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish. 
Prevents penalising model for strategies that might be correct, but didn’t finish 
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop 
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k 
token range)

MASKED

MASKED



Dealing with LM sequences
Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish. 
Prevents penalising model for strategies that might be correct, but didn’t finish 
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop 
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k 
token range)

source: Yu et al. 2025



Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead </think> Yes!
Yeah, no worries!
We should go and do this </think> Good!

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish. 
Prevents penalising model for strategies that might be correct, but didn’t finish 
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop 
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k 
token range).



Dealing with LM sequences
Length penalties can also be used to control LM generation length, but these aren’t 
super widely applied in the open?

Basically subtract (or add) how far from “gold” length we are!

gold len actual len
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Length penalties can also be used to control LM generation length, but these aren’t 
super widely applied in the open?



Dealing with LM sequences
Length penalties can also be used to control LM generation length, but these aren’t 
super widely applied in the open?

No generalisation 
beyond training 
lengths!



Adapting for LMs

1. LM inference is slow. How can we speed things up?


2. How do we deal with long sequences?


3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi

✅

✅



Dealing with never getting it right.
With GRPO, we might get all advantages in a group being 0 if they get the same 
score!

prompt (x)

y1

y2

y3

G

1

1

1

R A

0

0

0 Aj =
R(x, yj) − mean(RG)

std(RG)

Solution: just throw these samples out!

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]



Throwing samples out has issues…
If we throw these samples out, we get a reduced batch size over time…



Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a 
batch (“dynamic sampling”, DAPO)
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Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a 
batch (“dynamic sampling”, DAPO)

g3

g5

g6

g10

inference batch
train batch

σ>0

σ>0 σ>0

σ>0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

g13

g14

g15

σ>0

σ>0

σ=0

resample if needed.



Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a 
batch (“dynamic sampling”, DAPO)

source: https://thudm.github.io/slime/examples/glm4-9B.html

https://thudm.github.io/slime/examples/glm4-9B.html


Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our 
batch (“active refill”, Olmo 3 paper)
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Fix 2: Actively pull samples from inference engine on demand until we fill our 
batch (“active refill”, Olmo 3 paper)
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Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our 
batch (“active refill”, Olmo 3 paper)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g3 g5

g6 g10

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

time

g3 g5

g6

g3 g5

g6

g3

Inf. 
Eng.

train 
batch

send to GPU

1. Inference engine always running, so no 
resample requests 

2. Don’t oversample, but rather accumulate



Adapting for LMs

1. LM inference is slow. How can we speed things up?


2. How do we deal with long sequences?


3. How do we deal with zero-advantage groups (GRPO)?

✅

✅

✅



Putting it all together.



You now know everything!
Many modern papers are just a combination of the things I have just covered.

DAPO
- use clip-higher in importance clipping 
- filter out too long generations 
- oversample prompts to avoid small batch 
- token-level loss



You now know everything!
Many modern papers are just a combination of the things I have just covered.

Dr GRPO
- use sum-and-constant loss 
- remove std dev from GRPO advantage



You now know everything!
Many modern papers are just a combination of the things I have just covered.

Minimax Paper
- Clip importance ratio only (CISPO) 
- Clip-higher 
- FP32 precision for logprob mismatch 



How much does all this matter? ScaleRL 
knows!
Khatri et al., 2025

Read this, and you 
pretty much know 
most of what you 
need to know these 
days.



Practical example: DR Tulu
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Practical example: DR Tulu



Practical example:



Practical example: Olmo 3
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Practical example: Olmo 3



Practical example: Olmo 3



Also used pipelineRL to significantly speed up training

Practical example: Olmo 3



Practical example: Olmo 3
Mixing data prevents overfitting and collapse



Practical example: Olmo 3



Practical example: Olmo 3



Practical example: Olmo 3

https://allenai.org/blog/olmo3



Thanks for listening!
Go forth and train SOTA!
Further reading

- Always start with Sutton & Barto (chapter 13)


- Then OpenAI’s spinning up RL course is great 
(https://spinningup.openai.com/en/latest/
index.html)


- Costa’s 37 implementation details of PPO is 
amazing 
(https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/)


- ScaleRL (Khatri et al., 2025) is a great overview of 
recent approaches.

https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/


Thanks for listening!
Thanks to the many contributors for this work and slides:

Finbarr Timbers, Nathan Lambert, Teng Xiao, Michael 
Noukhovitch, Saumya Malik, Scott Geng, Faeze Brahman, 
Valentina Pyatkin, Saurabh Shah, Costa Huang, Hannaneh 
Hajishirzi, H2Lab as a whole.



Thanks for listening!
Thanks to the many contributors for this work and slides:

All my code for RL training can be found on github @ open-instruct

Happy to answer further questions etc:

hamishiv@cs.washington.edu

@hamishivi (and most other things)

mailto:hamishiv@cs.washington.edu


Thanks for listening!
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