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First: course logistics

* This talk is a bonus!

* Current state-of-the-art in LM training.

 Not explicitly graded on this.
» Second half will be regular course content

 Will have stuff that can be asked in assignments.
e Assignment-wise;

 Programming assignment 4 due in 2 days!

* Written assignment 2 should be out soon (not sure exact time)
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What is this talk about?

 |ntroduction to RL for LMs

 Assume very basic prior knowledge: basic idea about RL, know roughly
what an LM is.

 We will cover:
* Policy gradient basics
 PPO/GRPO basics
* Current tricks for LMs and policy gradient (DAPO, CISPO, GSPO...)

 Olmo 3 Results (If time)



What is an LM?

) ChatGPT 5.1 v T, Share

What is an LM?

Teehee, you hit me with the classic “define the thing you've literally spent your whole life staring at”

question. Fine. Here's the clean, expert rundown, even if it feels like explaining what water is to a fish.

A language model (LM) is a probabilistic model that assigns likelihoods to sequences of text. In other
words, it learns patterns in language and predicts what token is most plausible next. That's the core

mathematical object. Everything else is just fancy outfits on the same skeleton.

The Actual Technical Bits

 Formal definition: An LM models p(x1, 2, . . . , €, ) over sequences of tokens.

e Autoregressive version (most modern LMs): They factorize that probability as

n

p(iBl,ZT/‘z, SR 7mn) — Hp(xt ’ x<t)
=\

So they're basically playing supercharged next-token prediction.

Architectures



What is an LM?
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How to make an LM?

Base Model

“Pre—training”



How to make an LM? Pretraining data.

{
"source": "wikipedia",
"version": "vO",
"1d": 5,
"text": "Organic Chemistry/Cover

Welcome to the worlds foremost open content&lt;br&gt;0rganic Chemistry Textbook&lt;br&gt;on the web!

The Study of Organic Chemistry.

Organic chemistry i1s prumarily devoted to the unique properties of the carbon atom and its compounds. These
compounds play a critical role in btology and ecology, Earth sciences and geology, physics, industry, medicine and —
of course — chemistry. At first glance, the new matertial that organic chemistry brings to the table may seem
complicated and daunting, but all it takes i1s concentration and perseverance. Millions of students before you have
successfully passed this course and you can too!

This field of chemistry 1s based less on formulas and more on reactions between various molecules under
different conditions. Whereas a typtical general chemistry question may ask a student to compute an answer with an
equation from the chapter that they memorized, a more typical organic chemistry question i1s along the lines of what
product will form when substance X 1s treated with solution Y and bombarded by light. The key to learning organtic
chemistry is to understand it rather than cram i1t in the night before a test. It i1s all well and good to memorize
the mechanism of Michael addtition, but a superior accomplishment would be the abtility to explain why such a reaction
would take place.

As in all things, 1t is easier to build up a body of new knowledge on a foundation of solid prior knowledge.
Students will be well served by much of the knowledge brought to this subject from the subject of General Chemistry.
Concepts with particular importance to organic chemists are covalent bonding, Molecular Orbit theory, VSEPR
Modeling, understanding acid/base chemistry vis-a-vis pKa values, and even trends of the pertiodic table. This i1s by
no means a comprehensive list of the knowledge you should have gained already in order to fully understand the
subject of organic chemistry, but i1t should give you some i1dea of the things you need to know to succeed in an
organic chemistry test or course.



How to make an LM? Pretraining data.

Tokens
. Source.

"Hel lo World”

One Tweet (pre,-Elon)
"Blownk Space," Chorus
Wikipedia: ‘Fermi Estimation’
Wikipedia: “Taylor Swift”

&GPT-3 Paper + Appendices
One Yeor of The New Yorker
EncycloPoe,dia Britannica
Reddit Posts eer Month
English Wikipedio

Whatsdpp Messages per Hour
Published Books eer Year

<- TBH higher these days

Lo\r‘ge Lo\nﬁuage Models

https://x.com/srush_nlp/status/1633509903611437058



How to make an LM? Pretraining objective.

L) = ) _log P(uilui, ..., ui-1;6)

current token past tokens



How to make an LM? Pretraining behaviour.

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood
Boulevard today.

The 19-year-old singer was caught on camera beling escorted out of

the store by security guards.

The singer was wearing a black hoodie with the label ‘Blurred

Lines’ on the front and ‘Fashion Police’ on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie
and Fitch on Hollywood Boulevard today (pictured)

11

From OpenAl GPT-2 Release: https://openai.com/index/better-language-models/



How to make an LM?

Base Model

“Pre—training”

“Post—tkaining”

Post-trained
Model

12



How to make an LM? Post-training.

Follow natural language
iInstructions

Be aware of harmful
behaviors

»Respond according to

human preference
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Improve core skills

slide credit to Nathan Lambert



Why post-train?
w Owen Qwen3-8B-Base

What is 2+27
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Why post-train?
w Owen Qwen3-8B-Base

Q: What is 2+27? A:




Why post-train?
w Qwen Qwen3-8B-Base + “post-training”

What is 2+27




Post-training = a bag of techniques for adapting

Online
RL

SFT

Instr. Initial Instr. H Aligned
Base Model Tuning Model U Model N+1

Final

Released

Merging Model

Offline

RL



Reinforcement Learning is a big one!

!

Initial Instr. Alighed
Model Model N+1



Why do we need RL for LMs?

 Maximising things that are hard to maximise with next-token loss (e.g.,
preference learning)

What Should | do in Seattle?

Write me a good Which answer is better?

response!
Skip the Coffee Shops and don’t 1.Go on a hike
pack for rain 2.Go to some coffee shops...
uhhhh.... Oh, the right onel!



Why do we need RL for LMs?

 Maximising things that are hard to
maximise with next-token loss. — training trajectory

— T expected trajectory

e Train the model on distributions
that better match its output
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Source: https://rail.eecs.berkeley.edu/deepricourse-fa21/static/slides/lec-2.pdf



Why do we need RL for LMs?

 Maximising things that are hard to
maximise with next-token loss.

e Train the model on distributions that

better match its output (“distribution
drift”).

e Train In a “real” inference
environment (VLLM != HF).

' vs log(rrs?P) - log(m}™) when vliim-kl € [2e-2,1e-1]
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Source: https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-
RL-Collapse-from-the-Training-Inference-
Mismatch-271211a558b7808d8b12d403fd15edda



Why do we need RL for LMs?

 Maximising things that are hard to

. . . 5000
maximise with next-token loss.
4000 -
: : : , R | g it
e [ralin the model on distributions that 3000
better match its output (“distribution 2000
- r1 7 (®)
drift”). =
L 1000
o
* Allows us to go beyond bound of w0
teacher data. 1000
-2000
e ey
4000 -== AlbhaGo Lee
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Training time (hours)

Source: Silver, David et al. “Mastering the game of Go without human
knowledge.” Nature 550 (2017): 354-359.



How do we do RL for LMs?

* Current approaches are all based on policy gradient.

o |Vhy?

* Developed at OpenAl, OpenAl popularised RL for LMs.
 Was the main ‘go-to’ approach in past few years.

* Easier(?) to adapt to LMs: our LM is our policy, and we
directly train that.

* Policy gradient vs off-policy approaches (DQN, SAC) is
an ongoing debate in RL-land.




How do we do RL for LMs?

* Current approaches are all based on policy gradient.

o |Vhy?

* Developed at OpenAl, OpenAl popularised RL for LMs.
 Was the main ‘go-to’ approach in past few years.

* Easier(?) to adapt to LMs: our LM is our policy, and we
directly train that.

* Policy gradient vs off-policy approaches (DQN, SAC) is
an ongoing debate in RL-land.

Interestingly and conversely, the rliable optimality gap indicates that DQN is better than PPO
in Figure 6¢, because DQN does achieve higher average policy performance, but the analysis from
comparing to V7D (), in Figure 6b shows us that even though DQN performs better than PPO, DQN
is still generating a lot of high-value experience that it is not able to exploit. Conversely, because PPO

is performing worse according to rliable, but has a better Vb (s5() — v’ (so), improved exploration
would improve PPO more than it would DQN. Overall, these results suggest that both algorithms
struggle to extract the most from their experience and that rliable is not telling the full story.

source: https://www.arxiv.org/abs/2508.01329

arXiv:2508.01329v1 [cs.LG] 2 Aug 2025

Is Exploration or Optimization the Problem for Deep
Reinforcement Learning?

Glen Berseth
Université de Montréal, Mila - Quebec Al Institute, and CIFAR
glen.berseth@mila.quebec

Abstract

In the era of deep reinforcement learning, making progress is more complex, as the
collected experience must be compressed into a deep model for future exploitation
and sampling. Many papers have shown that training a deep learning policy under
the changing state and action distribution leads to sub-optimal performance, or even
collapse. This naturally leads to the concern that even if the community creates
improved exploration algorithms or reward objectives, will those improvements fall
on the deaf ears of optimization difficulties. This work proposes a new practical
sub-optimality estimator to determine optimization limitations of deep reinforce-
ment learning algorithms. Through experiments across environments and RL
algorithms, it is shown that the difference between the best experience generated is
2-3x better than the policies’ learned performance. This large difference indicates
that deep RL methods only exploit half of the good experience they generate.

1 Introduction

What is preventing deep reinforcement learning from solving harder tasks? Many papers have
shown that training a deep learning policy under the changing state distribution (non-IID) leads to
sub-optimal performance [Nikishin et al., 2022, Lyle et al., 2023, Dohare et al., 2024]. However, at a
macro scale, it is not completely clear what causes these issues. Do the network and regularization
changes from recent work improve exploration or exploitation, and which of these two issues is the
larger concern to be addressed to advance deep RL algorithms? For example, better exploration
algorithms can be created, but will the higher value experience fall on the deaf ears of the deep
network optimization difficulties?

How can we understand if the limited deepRL performance is due to a lack of good exploration or
deep network optimization (exploitation)? Normally in RL, to understand if there is a limitation, an
oracle is needed to understand sub-optimality, how far the algorithm is from being optimal. However,
that analysis is with respect to the best policy and aliases both causes of the limitations of either
exploration or optimization. Instead, consider the example where a person is learning how to build
good houses. There are two issues that may prevent the person from consistently building a high
quality house: (1) they can’t explore well enough to discover a good design or (2) they can explore
well enough to find good designs, but they can’t properly exploit their experience to replicate those
good experience. For deep RL algorithms, which of these two issues is more prevalent?

To understand if exploration or exploitation is the larger culprit, a method is needed to estimate the
practical sub-optimality between these cases. This estimator should (1) measure the agent’s ability
to explore, (2) while also estimating the average performance for the learning policy 7?. While
estimating the average policy performance is common, estimating the exploration ability for a policy
is not. Extending the house-building metaphor, the idea is to estimate how close the agent ever got to
constructing a good home. Therefore, to realize this estimator, we propose computing the exploration
value for a policy that is calculated over prior experience, called the experience optimal policy. Using

Preprint. Under review.



Policy Gradient



A crash course on policy gradient

For this, we consider a parameterised policy: a policy that can directly select
what action to take, without necessarily consulting value (or g-) functions.

Effectively, we learn to produce a probability distribution over actions given
a state.

ﬂg(a | §) =
2930 @

Ty can be anything we can take gradients on! ...like a LM!



A crash course on policy gradient

We can then aim to maximise performance by just taking gradient steps:

01 = 0, + aV/J(\Ht)



A crash course on policy gradient

We can then aim to maximise performance by just taking gradient steps:

01 = 0, + aV/J(\Ht)




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N'(0, 6%)

2. Loop until convergence:

3. Pick single data point i
4. Compute gradient, 2l ai(:)

D.
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Update weights, 8 « 8 — n Y

6. Return weights

slide credit: https://introtodeeplearning.com/2018/materials/2018 65191 Lecturel.pdf



https://introtodeeplearning.com/2018/materials/2018_6S191_Lecture1.pdf

A crash course on policy gradient

We can then aim to maximise performance by just taking gradient steps:

01 = 0, + aV/J(\Ht)

J(0) here is our objective function. We will set it as the ‘true’ value of the initial

state under our policy:
J©O) = v, (s0)



A crash course on policy gradient

We can then aim to maximise performance by just taking gradient steps:

01 = 0, + aV/J(\Ht)

J(0) here is our objective function. We will set it as the ‘true’ value of the initial

state under our policy:
J©O) = v, (s0)

V., 1S the value tunction for our parameterised policy, and s, Is the initial state.

We could do simple gradient descent, but in practice we can plug into Adam, etc.



A crash course on policy gradient

With some math (see Sutton & Barto, Chap. 13), we can show:

VJ() < E, |G, Vyn(x(A, | S,0))]

TN

Expectation 3
unger our probability
over next

policy Expected action
return
(reward)




A crash course on policy gradient

With some math (see Sutton & Barto, Chap. 13), we can show:

VJ(O) < E, |G, Vyln(x(4, | S, 0))|

/ AN

Expectation probability

under our
- over next
policy Expected action
return
(reward)

This is exactly the REINFORCE update!



REINFORCE: The full algorithm

Basically:

while True:
Generate a full episode (“rollout”™) starting from s, using 7y
Compute reward over the rollouts

Compute the REINFORCE loss and apply gradient



How iIs this instantiated for LMs?

E, |G, Vyln(n(A, | S, 0))
Gt — R(St, At) We have some reward function

St — X Our state is just the text seen so far

A = y Our action is producing a token.
! 4 Generating a full answer = episode.

E . [R(x,y) Vgln my(y | x)]



How iIs this instantiated for LMs?

In practice, we draw prompts (x) from a dataset (D), and sample completions (y)
from our model, and do this in batches:

1

1 YT
eyl 20 %‘, R(x,y,) Voln zy(y; | )]



How iIs this instantiated for LMs?

In practice, we draw prompts (x) from a dataset (D), and sample completions (y)
from our model, and do this in batches:

1 1 YT
Eepyersiol sz 207 2 ROGY) Voln ()
W/ N
prompts over g\aﬁéh reward logprobs of

reSponses reSponse



How iIs this instantiated for LMs?

Reward model R (x, y)

State O O Action
) g8 T

LM Policy: 7Ty

slide credit: Hannaneh Hajishirzi



Going beyond REINFORCE

1 1 YT
Eeop ool 207 %‘, R(x,y,) Voln my(y; | )]

Issues:
* High variance
 Reward scale can cause issues... (consider neg. vs pos. reward)

 We can only use samples directly from our current loop



Baselining & Advantage




Reduce variance: baselining

Core idea: try to normalise our reward as much as possible.

(R(y, x) = b) Vgln my(y | x)



Reduce variance: baselining

Core idea: try to normalise our reward as much as possible.

(R(y,x) — b) Vyln my(y | x)
Most common choice for baseline: value estimate

(R(y,x) — Vo(x,y.)) Vgln my(y | x)



Reduce variance: baselining

Core idea: try to normalise our reward as much as possible.

(R(y,x) — b) Vgln zy(y | x)
Most common choice for baseline: value estimate
(R(y, X) = Vig(x, y)) Vgln 7y | )

We call this form of normalising the advantage function:

Ay(x,y) = R(x,y) — Vo(x,y_,)




Reduce variance: baselining

Core idea: try to normalise our reward as much as possible.

(R(y,x) — b) Vgln zy(y | x)
Most common choice for baseline: value estimate
(R(y, X) = Vig(x, y)) Vgln 7y | )

We call this form of normalising the advantage function:

Agx,y) = R(x,y,) — Vj(ax, y_ \ouestposs

knew V exactly!




Other forms of estimating advantage
Ag(x,y) = R(x, ) = Vp(x,y,)

PPO: Use Generalised Advantage Estimation (GAE) Gexeratize apvantace Estaarion

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science

University of California, Berkeley

{joschu, pcmoritz, levine, jordan, pabbeel }@eecs.berkeley.edu




Other forms of estimating advantage
Ag(x,y) = R(x, ) = Vp(x,y,)

PPO: Use Generalised Advantage Estimation (GAE) Gexeratize apvantace Estaarion

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel

Department of Electrical Engineering and Computer Science

University of California, Berkeley
] ' ine

5 ¢ p— ]/'t —|— J/V( St—l—l) _ V( St) (3080hy, pomOT1te, loving, jordan, pabbee

1D residual - "how much better than expected will we do taking a particular action”
we use a learnt value function

1}@eecs.berkeley.edu



TD Residual?

5, =r+yVis,,) — V(s)

1D residual - *"how much better than expected will we do taking a particular action™

This should be familiar...



TD Residual?

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q*(s,a)

Q" (s,a) = Z T (s,a, .'s,'/) {R(s. a. s/) -1- "‘,"Y*(Sl)}

V*(s) = maaxZT(s, a,s) [R(s, a,s’) +~ V*(S/)J

o, =1+ yV(s.)— V(s)



Other forms of estimating advantage
Ag(x,y) = R(x, ) = Vp(x,y,)

PPO: Use Generalised Advantage Estimation (GAE) Gexeratize apvantace Estaarion

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel

Department of Electrical Engineering and Computer Science

University of California, Berkeley
] ' ine

5 ¢ p— ]/'t —|— J/V( St—l—l) _ V( St) (3080hy, pomOT1te, loving, jordan, pabbee

TD residual - “how much better than expected did we do?”
we use a learnt value function

1}@eecs.berkeley.edu



Other forms of estimating advantage
Ag(x,y) = R(x, ) = Vp(x,y,)

PPO: Use Generalised Advantage Estimation (GAE) Gexeratize apvantace Estaarion

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science
University of California, Berkeley

5 ‘7 ‘7 {joschu, pcmoritz, levine, jordan, pabbeel}@eecs .berkeley.edu
=1+ rVisg) (5,)

TD residual - “how much better than expected did we do?”

O l we use a learnt value function
Z (r2)' 3,

= note that y is usually set to 1, A to 0.95 for RL w/ LMs!

We also typically normalise the advantages within the
batch (whitening)




How to estimate advantage?

GRPO (Shao et al 2024): Use Group Estimates




How to estimate advantage?

GRPO (Shao et al 2024): Use Group Estimates

(" )

G

V1

- ) R(x,y;) — mean(R)
- a std(R;)

Y3

\- J

No value estimation needed! Just take multiple samples per prompt and
use average improvement over the group as advantage.



How to estimate advantage?

RLOO (Ahmadian et al 2024): Use leave-one-out estimate




How to estimate advantage?

RLOO (Ahmadian et al 2024): Use leave-one-out estimate

G
1

prompt (x) Vs A] — R()’]a X) T a 2 R(y(l)a X)

i%]

Y3

Use average of other samples from the same prompt.



How to estimate advantage?
REINFORCE++ (Hu et al. 2025): Use batch estimate (ho groups!)




How to estimate advantage?
REINFORCE++ (Hu et al. 2025): Use batch estimate (ho groups!)

i : R(x,y;) — mean(R)
( ) B x, yj —
—

\- ,

Just normalise across everything in batch. Commonly done anyway
(“whitening”).



How to estimate advantage?

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates




How to estimate advantage?

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates

No value estimation
needed! Just take
multiple samples per
~token and use those!




How to estimate advantage?

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates

VinePPO
£ ¥ 1
Vuc(st) = % 2k R(nk)
. No value estimation
y / ’ I Just tak
S1 -5 <—— —@ M1 4 b1= Vimc(s1) needed. ust take
\_ _ o3 — 0.66 multiple samples per
, ~token and use those!
AR A
§2 < —-——--0 771 + ba= Vmc(s2)
' _ e 77:'3 = 1.00
T3 T2 T1 \ J




A summary of advantage estimates

[EXND,yNﬂH(,\x)[(A(ya x) Vglogm,(y | x)]

RLOO / GRPO

4 & . . 1 G
RLOO: Vr(z) = & Y.y R(Ti)

Y

1 — bi=Vgr(z) = $(0+1)

GRPO: V;(z) = £ 37 R(1)

= 0.5

So — ba= VR(:B) = %(O + 1)

]

= 0.5

xXr

7

So —>

T2 Ti
O O

PPO

V¢(8t) = ValNet(st; Qb)

s b= Vy(s1)
= 0.1934

—s b= Vy(s2)
= 0.5733

VinePPO
Vamo(st) = % Yok R(mx)

e )
= =touj )

s <-—— -0 M1 +— bi= VMmc(s1)
\__-Q N3 = 0.66
e A

> < —— - @ 77/1 —+— bo= VMC(SQ)
e _ e 77:’3 = 1.00

\_ J

source: VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment (Kazemnejad et al 2024)



Going beyond REINFORCE

1 1 Y1
[EXND,yw(.\x)[E 2 = ; R(x,y) Vgln zy(y;| x)]

Issues:
* High variance
 Reward scale can cause issues... (consider neg. vs pos. reward)

 We can only use samples directly from our current loop
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Going beyond REINFORCE

1 1 Y1
[EXND,yw(.\x)[E 2 = ; R(x,y) Vgln zy(y;| x)]

Issues:

« High variance

 Reward scale can cause issues... (consider neg. vs pos. reward)

 We can only use samples directly from our current loop



Importance Sampling & Off-
Policy data



Revisiting REINFORCE

[ o 1
[EXND,y[E 2 T Z R(x,y;) Voln my(y; | x)]
Yi
Cannot reuse old data! -> can we get more efficient?

What if we re-used our old data anyway?

Well, our problem is we are doing our loss assuming sampling from our
current policy...



Train on “old” samples w/ IS

We can reuse old samples with importance sampling!

Po(7)
Pﬁ(T )

E,., [ =E,., ' f(f)]



Train on “old” samples w/ IS

We can reuse old samples with importance sampling!

Po(7)
Pﬁ(T )

E, 0] =E,.,

some function on
trajectories over

policy

f(7)



Train on “old” samples w/ IS

We can reuse old samples with importance sampling!

E, 0] =E,., Ilj 98 fio
p

Same function, but
now we drawing
trajectories from diff
policy, and reweight
accordingly!

some function on
trajectories over

policy



Applying IS to REINFORCE

We can apply this directly to reinforce! Our distribution is just the older policy.

[E.XND,yNﬂH(.‘X) ...In ﬂ.@(yl | X)

In 7,(y; | x)

E —
Inmy (v;|x)

XND,yNJZ'QOI d(. x) *



Applying IS to REINFORCE

We can apply this directly to reinforce! Our distribution is just the older policy.

[EXND,yNﬂH(.‘X) ...In ﬂ.@(yl | X)

In 7,(y; | x)

‘In 7y (Vi ]X)

problem: if the ratio
gets too crazy, our
estimate ‘blows’ up.

|S

XND,yNﬂ'gol d(. x) *



Applying IS to REINFORCE

Main fix: just stay within some “safe” region!

"Trust Region”
.y H/“-** (:77(7..;1.1 ‘ﬂ-ﬁ)] <9

L™ ()

source: https://avandekleut.github.io/ppo/

v éold



TRPO: Keep within some KL constraint

In | x
[E ﬂé’(yz | )

x~D,y~7t901 d(.\)c) R

Don’t let the policy stray too far!

Requires some more complex techniques to solve...

Schulman et al. 2016



PPO: just clip the ratio!

Use the same importance sampling technique:

lIl ﬂe(yl | X)
V. = ——

L In ﬂgold(yi | X)

But now just clip the ratio to avoid moving too far:

L=F [min (ri(H)Ai, clip(ri(é’),l —¢€,1 + G)Ai)]

Why min on top of clip”? Because if the estimate would make advantage higher,
Its okay - we just want to be pessimistic about true advantage.

Schulman et al. 2017



Standard PPO = REINFORCE+clip+advantage

1 1 & N~ R
= Doy, (-‘x)[E Z = Z [mm (ri(H)Ai, chp(rl-(H),l —e,] + G)Ai)]

i

o In 7,(y; | x)
~In 7y (Vi ] %)

A(x,y) = R(y, x) — Vy(x)



Can we improve the IS further?

DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.

1 1 & . N~ .
_xND,yNJZ@(.\x)[E Z T Z lmln (’” (0)A;, chp(r (0),1 —€p,,,.,1 + ehigher)Ai)]

Vi



Can we improve the IS further?

DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.

1 1 )T | R | A
_XND,yNﬂg(.\x)[E Z ? ; [mln (ri(H)Ai’ Chp(ri(e)’l o €lower’1 T €higher)Ai)]

Basically: allow larger updates when raising token probabilities, but don’t further
decrease the lower bound.

Minimax paper goes further and sets ¢, t0 infinity to avoid lower bound clipping!



Can we improve the IS further?

CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.

1 | & | | n
_xND,yNﬂg(.\x)[E Z ? Z [mln (ri(9)9 Chp (ri(e)’l - €lawer’1 T €higher) ) Az]

Vi



Can we improve the IS further?

CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.

1 ] & , , n
_xND,yNﬂg(.\x)[E 2 ? Z lmln (ri(e)’ Chp (ri(e)’l o elower’l T €higher) ) Al]

Y

Basically: directly clip the ratio, to allow large advantages to still have some
effect - even when lots of clipping might be happening.



Can we improve the IS further?

GSPO (Zheng et al 2025): use sequence-level importance sampling instead of
token-level.

R < . A
FxDyer ol 3 D = D [mln (si(H)Ai, clip(s40),1 —e,1 + G)Ai)]

Vi

1

7o(y; | x) it I & 7e(y; | x)
(0 = — |
O (”Qold(yl' | X)) eXP( | il 20 705Vt | X))

=1




Can we improve the IS further?

GSPO (Zheng et al 2025): use sequence-level importance sampling instead of
token-level.

1 ] & , ~ .
‘XND,yNﬂe(-\x)[E Z T Z [mln (Si(é’)Ai, chp(sl-(é’),l —e,1 + G)Ai)]

Vi

my(y; | x) lylil 1 i my(y; | x)
(0 = — |
R (”Qold()ﬁ' | X)) eXP( | i Z ' 79, (Vi | X)

=1

Basically: compute the importance ratio of the whole sequence, and then apply
the same value to each token. Reduces noise of token-to-token.



Going beyond REINFORCE

1 1 Y1
[EXND,%@(.\)C)[E 2 = ; A(x, y;) Vgln my(y; [ X)]

Issues:

« High variance

 Reward scale can cause issues... (consider neg. vs pos. reward)

 We can only use samples directly from our current loop



Going beyond REINFORCE

l w1 & ~ A
_x~D,y~ﬂ9(.\x)[§ Z ? 2 ’mln (ri(H)Ai, chp(ri(ﬁ),l —e,1 + e)Al-)]

Vi

Issues:

» High variance

 Reward scale can cause issues... (consider neg. vs pos. reward)

» We can only use samples directly from our current loop



Going beyond REINFORCE

o1& . :
Dyt ol Z ’mln (404, clip(r0),1 — €1 + G)Ai)]

Vi

- ln ﬂe(yl | .X)
l In ]Z.Hold(yi | X)

A(x,y) = R(y,x) — Vy(x)



One last detail: KL penalty

In practice, we sometime also apply a KL penalty to the reward:

H71Ta(;X 4:fENfD,yN7T9(yICU) [TdJ(:an)] T IBDKL [779 (y ‘ QZ‘) H ﬂ-l'ef(y | .’13)]

However, these days often the KL penalty is completely removed.
S0, I’m going to skip over this.




Backing up to the full algorithm

Algorithm 1 PPO-Clip
1: Input: initial policy parameters 6, initial value function parameters ¢
2: for k=0,1,2,... do
3:  Collect set of trajectories Dy = {7;} by running policy 7, = 7(6,) in the environment.
4:  Compute rewards-to-go R,.
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vj, .
6: Update the policy by maximizing the PPO-Clip objective:

T
1 . 7T9(Clt|3t)
- Y N AT AT
kel = TG MAX 175 - <7rek<at|st> c(se,ar), gle, A™ (sy,a4)) )

typically via stochastic gradient ascent with Adam.
7:  Fit value function by regression on mean-squared error:

1 ~ ~ ~ 0\ 2
— argmi NN (Vilse) - R ) |
¢k+1 arg m(;n ‘D}JT - ( ¢(St) t

typically via some gradient descent algorithm.
8: end for

source: https://spinningup.openai.com/en/latest/algorithms/ppo.html



Backing up to the full algorithm

Reward model R (x, y)

¢ Reward

State O Action
080 2 Tome

o

LM Policy: 7Tg

slide credit: Hannaneh Hajishirzi



Backing up to the full algorithm

Verification function

= [! if correct
0 otherwise

¢ Reward
State O Action
)08 T
¢

LM Policy: 7,

slide credit: Hannaneh Hajishirzi



Adapting for LMs



Adapting for LMs

1. LM inference is slow. How can we speed things up?
2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPQO)?

slide credit: Hannaneh Hajishirzi



Speeding up inference.

Lots of work done on speeding up inference by great teams focussed on
iInference-only settings. Much of this can be applied in the RL setting!

Y LL|V|

Easy, fast, and cheap LLM se

NVIDIA TensorRT



Speeding up inference: logprob mismatch.

One big issue: logprob computation can mismatch between inference and
training! (Yao et al, 2025)

‘“sampler

Tearner (aa 9) 2 . TMearner (a, 9) +\
A, clip ,1—¢€,1+¢€ A) .
Tlearner (a, eold) ( TMearner (CL, Oold) ) -

4 i
4L ~TT (eold) V9 Imin (

We are sampling via vlim, but computing our logprobs in our training code.




Speeding up inference: logprob mismatch.

One big issue: logprob computation can mismatch between inference and
training!

Is this problem familiar?

Train on “old” samples w/ IS

We can reuse old samples with importance sampling!

Py(7)
_TNpg[«f(T)] — _T~pﬂ l pﬁ(T) f (T)]

Same function, but
now we drawing
trajectories from diff
policy, and reweight
accordingly!

some function on
trajectories over

policy



Speeding up inference: logprob mismatch.

One big issue: logprob computation can mismatch between inference and
training!

We apply the same solution as we did for training on old data: importance
sampling!

Tlearner ((1, 9) A Cllp ( Tearner (CL, 0)
Tlearner (CL, Oold) , Tearner (CL, Oold)

l

earner \ W 90 - 7 a A - s a A
ﬂawrsanlplcr(gold) |:min( M (CL ld) ’C) ) v9 mln(ﬂ_ lcarnc(ré ,909121) A, Cllp( learner (@, 6) 1 — ¢, 1 + 6) A):|

)
Mg ampler (CL, Hold) learner \“» TMearner (a? gold)
%/—/

truncated importance ratio

, 1—¢,1 e)

>
—

") .
JCLNWSELIIIDICI(HOId) VO mln(




Speeding up inference: logprob mismatch.

This can be the difference between collapse and success.
Empirically, | find it more important the more off-policy you go.

f
Entropy of phgP - E unllogphy® — logpfP] - Average Response Length Rewards AIME Accuracy
1.4 1 LM 0.4
| 4000 - N
1.2 afl 0.0020 - | & | 04
Pl i’ P 3500 - | 0.2
+O - T 3000 .
0.0015 - 00- 0.3 -
0.8 2500 -
0.6 10.0010 - 2000 - —0.2 1 0.2 -
| |
4 | ‘ .l. \ Y |
0.4 4\ . 'b | { l L \ 1500 0.4 -
A 10.0005 - Wl R A / 0.1 -
0, = BF16 Rollout } 1000 -
- BF16 Rollout w. TIS | c00 ¥ —0.6 -
0.0 1 I 1 I I0.0000 1 1 I 1 I 1 ] 1 ] 1 I | 1 1 | 1 1 !
0 50 100 150 200 250 0 50 100 150 200 250 O 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

source: Yao et al. 2025



More recently: maybe just using FP32 precision for LM head works?

MiniMax-M1 Before Fix

1.0F

o o o
B~ (e)} oo
| | |
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0.0 |
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MiniMax-M1 After Fix
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0.0

!
0.2 0.4
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Figure 3 | Probability of tokens in training-mode code vs. probability of tokens in inference-mode
code. Each point in the figures represents an individual token. The Pearson correlation coefficient is
indicated in the figures. Theoretically, the two probabilities should be identical, and all the tokens
should be exactly on the diagonal line. Left: Correlation of the M1 model before our fix; Right:
Correlation of the M1 model after applying our fix of using FP32 precision for the LM output head.

Speeding up inference: logprob mismatch.

source: Minimax 2025



Speeding up inference: logprob mismatch.

More recently: maybe just using FP16 precision fixes all these issues???

1.0
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w—— fD16V
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only stable when:

1. FP32 viim,
BF16 training.

2. FP16 viim,
FP16 training

source: Qi et al 2025



Speeding up inference: logprob mismatch.

Even more recently: maybe theres just bugs in the inference code??7??

4.2.4 Diable Cascade Attention in VLLM

According to this GitHub issue, we set disable_cascade_attn=True when initializing the vLLM
g engine and found that it significantly helps reduce the training-inference mismatch in
| experiments conducted on A100 GPUs. We performed two on-policy GRPO experiments using
Qwen3-14B-Base as the base model on A100 GPUs, with disable_cascade_attn setto True
lanielhancher " glad you |Ik€d the pOSt' YOU re SpOt on to suspect ar\d 1.3 lse , respectlvely.. The resu!ts are showr? In Flgure 21. It can be observed that after
disabling cascade attention, the vllm-kl metric decreased from the range of 5e-2 to 1e-1to
Iower-level |mp|ementat|on issues. That's exaCtIy what we found in the around 1e-3, indicating a substantial reduction in training-inference mismatch. In addition, the
0r|g|na| b|og rewards on the training set also increased appropriately.
The disable_Cascade_attn finding (SeC 4.2.4) Was the Sym ptom, bUt the 1071 - —— diasble cascade_attn T | diasble cascade_attn
—— enalbe cascade_attn ’ —— enalbe cascade_attn
root cause was that silent FlashAttention-2 kernel bug we detailed, ﬂ o
which was particularly problematic on A100s: s
On A100 GPUs (and L20s), under certain batch/seq lengths, the kernel e ¥oe
. . . . o E g
triggers its split_kv path. This path had a bug that incorrectly transposed E s
the LSE layout. | -
This corrupted tensor caused a "complete precision collapse" in Cascade - 0.1
Attention, which is what we measured as that massive mismatch KL. 0.0] /-
Good Iuck W|th the FP1 6/ BF16 tests I'd love to know what you find! bW B eetee W W B e =

Figure 21: Results of the ablation study on using cascade attention. We conducted two on-policy
experiments on A7100 GPUs: one with cascade attention enabled and another with the same configuration but
with cascade attention disabled.. Left: The dynamics of vllm-kl metric. Right: the dynamics of training

source: https://x.com/RichardYRLi/status/1984858850143715759

rewards

source: Liu et al 2025



Speeding up inference: logprob mismatch.

Even more recently: maybe theres just bugs in the inference code??7??

'l ‘\
[4 A}
J 1
f \
g 1
E 1
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: 1




Speeding up inference: async RLHF
Let’s review the standard algorithm for PPO/REINFORCE:

while True:
Generate a full episode ("rollout™) starting from s, using 7y
Compute reward over the rollouts

Compute the loss and apply gradient (potentially mult. steps)



Speeding up inference: async RLHF

We can visualise this flow like:

Gen. GPUs
Train GPUs /
Generating 5 \
rollouts 1.
training
weight
compute Sync

logprobs



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs



Speeding up inference: async RLHF

Gen. GPUs

Train GPUs



Speeding up inference: async RLHF

Fix 1: Overlap training and inference! This also makes our overall algorithm faster
If we have enough compute!

e ——————————————————
Gen. GPUs

Train GPUs

Drawback: our inference is now 1 step off our training (off-policy). In practice,
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!



Speeding up inference: async RLHF

Fix 1: Overlap training and inference! This also makes our overall algorithm faster
If we have enough compute!

e ———————————

\ \

Gen. GPUs

Train GPUs

Drawback: our inference is now 1 step off our training (off-policy). In practice,
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!



Speeding up inference: async RLHF

Fix 2: Overlap training and inference, and continuously generate samples when
Inference compute frees up.

e ———————r—

Gen. GPUs —

Train GPUs

What do we do with interrupted generations? Just recompute KV cache and then
continue.



Speeding up inference: async RLHF

Fix 2. Overlap training and inference, and continuously generate samples when
Inference compute frees up.

This is exactly what AReal does!

Interruptible Generation

Training D Generation Load Weight

KV Cache

Recompute x Interrupted Sequence

I | I
Batch 1 Batch 2 Batch 3

source: Fu et al 2025



Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when
Inference compute frees up, and don’t recompute KV cache!

e ———————————————————
Gen. GPUs

Train GPUs

Run a training step whenever we have a batch available.
Scalable wrt inference compute.



Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when
Inference compute frees up, and don’t recompute KV cache!

This technigue was proposed by pipelineRL.

constant batch size inference

I R
B

{ weights through time

GPUs

GPU idle
Time

source: Piché et al 2025



Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when
Inference compute frees up, and don’t recompute KV cache!

This technique was proposed by pipelineRL. Requires being careful about
multithreading!

” finbarr & &)

half of the speed ups I’ve found in our RL pipeline aren’t ML related at all

but are simply improvements to how we do multithreading

190.9K

source: https://x.com/finbarrtimbers/status/1973382120451060161



Adapting for LMs

1. LM inference is slow. How can we speed things up?
2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPQO)?

slide credit: Hannaneh Hajishirzi



Dealing with LM sequences

In practice, we have some maximum length we allow models to decode to.

This means some sequences will be unfinished.

maxlen

s1 Sure, | can do that!

s2 Sure, sounds like a plan!
s3 Sure, how about we go ahead and book

s4 Yeah, no worries!
s5 We should go and do this other thing th



Dealing with LM sequences

Vanilla: Treat and score as usual. Trains model to use only up to maxlen.

maxlen

s1 Sure, | can do that!

s2 Sure, sounds like a plan!
s3 Sure, how about we go ahead and book

s4 Yeah, no worries!
s5 We should go and do this other thing th



Dealing with LM sequences

Vanilla: Treat and score as usual. Trains model to use only up to maxlen.
Overlong filtering (DAPQ): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
|[debated].

maxlen

s1 Sure, | can do that!

s2 Sure, sounds like a plan!
s3 Sure, how about we go ahead and book MASKED

s4 Yeah, no worries!
s5 We should go and do this other thing th MASKED



Dealing with LM sequences

Vanilla: Treat and score as usual. Trains model to use only up to maxlen.
Overlong filtering (DAPO): Filter and remove samples that don’t finish.

Prevents penalising model for strategies that might be correct, but didn’t finish
|[debated].

0.35 - - W/0 overlong filtering
w/ overlong filtering

. J J\«\/\
-0 4 ,\//\/\/\/\\/\N\/\/\/w\/

0 1000 2000 3000 4000 5000
Step

o
N
o

AIME avg@32
o =

o
—
o

0.051

(a) Performance on AIME.

source: Yu et al. 2025



Dealing with LM sequences

Vanilla: Treat and score as usual. Trains model to use only up to maxlen.
Overlong filtering (DAPQ): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
|[debated].

Interruptions (ScaleRL): Apply budget forcing and make the model stop

(append “okay, now to stop thinking and give an answer</answer>" in 10-12k
token range).

maxlen

s1 Sure, | can do that!

s2 Sure, sounds like a plan!
s3 Sure, how about we go ahead </think> Yes!

s4 Yeah, no worries!
s5 We should go and do this </think> Good!



Dealing with LM sequences

Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

gold len actual len

\ [/

r(y/ygold/ ngold) — H(E/ — ygold) — & |Ngold — Ny|,

Basically subtract (or add) how far from “gold” length we are!

Published as a conference paper at COLM 2025

L1: Controlling How Long A Reasoning Model Thinks
With Reinforcement Learning

Pranjal Aggarwal & Sean Welleck
Carnegie Mellon University
{pranjala, swelleck}@cs.cmu.edu



Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

Dealing with LM sequences
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Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

Dealing with LM sequences
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Adapting for LMs

1. LM inference is slow. How can we speed things up?
2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPQO)?

slide credit: Hannaneh Hajishirzi



Dealing with never getting it right.

With GRPO, we might get all advantages in a group being 0 if they get the same
score!

G R A

) . EooDyer, (.|x)[% 2 % i :min <rl-(6’1ip(l’i(6’),1 —e,1 + 6)A1>
yl 1 O Yi
prompt (x) » |1 0
R(x,y;) — mean(Rg)
vs | 1 0 A] - -
- Std(RG)

Solution: just throw these samples out!



Throwing samples out has issues...

If we throw these samples out, we get a reduced batch size over time...

real batch size ratio



Pulling new samples.

Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

iInference batch

train batch
i gl0 gi13
o>0 o>0 g3 g6
o>0 o>0
2 g5 gl1 gl4 -
g- 0>0 >0  0>0 g5 g10
o>0 o>0

g3 g6 gl5

O
o>0 o>0 -




Pulling new samples.

Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

iInference batch

LR

o>0 o>0
oo % gﬁxx '
g- >0 o g5 gl10

o>0 o>0

train batch

o>0 x 93 96

gl10

g3 g6 g15

O
o>0 o>0 -




Pulling new samples.

Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

iInference batch

LR

o>0 o>0
oo % gﬁxx '
g- >0 o g5 gl10

o>0 o>0

train batch

o>0 x 93 96

gl10

g3 g6 g15

O
o>0 o>0 -

resample if needed.



Pulling new samples.

Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

Here, over_sampling batch_size needs to be greater than rollout batch _size . For example:

-—rollout-batch-size 32 \
--n-samp les-per-prompt 8 \
--over-sampling-batch-size 64 \

source: https://thudm.github.io/slime/examples/gim4-9B.html



https://thudm.github.io/slime/examples/glm4-9B.html

Pulling new samples.

Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)




Pulling new samples.

Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

time I

i 10
o>0
Inf.
EnQ. 2 g5 gil
g g- o>0 >0
g3
o>0 0
train 0 O
batCh g6 g6 g6 gl0

send to GPU



Pulling new samples.

Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

time I

10

o0

INf.

Eng. 92- g05>O

g3
o>0 0
. g3 g3 g5 g3 g5 g3 5 A
train L RS 1
batCh g6 g6 g6 gl0

send to GPU



Pulling new samples.

Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

fno. | | .

0=0 1. Inference engine always running, so no

93 resample requests

1 2. Don’t oversample, but rather accumulate
train | o : | Tl : |
batch g6 g6 g6 gl10

send to GPU



Adapting for LMs

1. LM inference is slow. How can we speed things up?
2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPO)?



Putting it all together.



You how know everything!

Many modern papers are just a combination of the things | have just covered.

DAPO

- use clip-higher in importance clipping

- filter out too long generations

- oversample prompts to avoid small batch
- token-level loss

hil ByteDance | Seed @ AIR 1121 meranse

DAPO: An Open-Source LLM Reinforcement Learning
System at Scale

IByteDance Seed “ZInstitute for Al Industry Research (AIR), Tsinghua University
3The University of Hong Kong
4SIA-Lab of Tsinghua AIR and ByteDance Seed

Full author list in Contributions




You how know everything!

Many modern papers are just a combination of the things | have just covered.

Dr GRPO

- use sum-and-constant loss
- remove std dev from GRPO advantage

Understanding R1-Zero-Like Training: A Critical Perspective

Zichen Liu ™2, Changyu Chen !, Wenjun Li 3, Penghui Qi 2,
Tianyu Pang!, Chao Du!, Wee Sun Lee?, Min Lin?

1Sea Al Lab

“National University of Singapore

3Singapore Management University




You how know everything!

Many modern papers are just a combination of the things | have just covered.

Minimax Paper

- Clip importance ratio only (CISPO)
- Clip-higher
- FP32 precision for logprob mismatch

7/ MINIMAX

MiniMax-M1: Scaling Test-Time Compute
Efficiently with Lightning Attention

MiniMax!




How much does all this matter? ScaleRL

Knows!
Khatri et al., 2025

Read this, and you The Art of Scaling Reinforcement Learning
pretty much know Compute for LLMs
mOSt Of What yOU Devvrit Khatri*:*:!, Lovish Madaan':5-*,
Rishabh Tiwari’'. Rachit Bansal®'. Sai Surya Duvvuri®!. Manzil Zaheer''.
need tO knOW these Inderjit S. Dhillon®, David Branr'ldfonbror\errly . Rishabh Agarwal®:'
days. IMeta, 2UT Austin, UCL, *UC Berkeley, Harvard University, ®Periodic Labs

*Equal contribution, 'Work done at Meta



Practical example: DR Tulu

QDR Tulu




Context: Pelosi, the first and only female House Speaker, has served her San Francisco district for decades and capped a long career with this decis
lon. She described it as the end of a decades-long career and
highlighted her role leading the House.

J
searched: 10 links | Browsed: 4 links | Tool calls: 6 | Failed: 1

fou: exit
s00dbye!

s Stopping Search vLLM server...

‘[[A

s Stopping MCP server...

“oot@saturn-cs-aus-246:/weka/oe-adapt-default/hamishi/dr-tulu/agent# uv run --extra vllm python scripts/launch_chat.py --model rl-research/DR-Tulu-8E
=== Interactive Chat Launcher ===

A'MCP server is not running on port 8000

_aunch MCP server? (y/n): vy

A Launching MCP server on port 8000...

i MCP server output will be logged to /tmp/mcp_server_80600.1log

& Waiting for MCP server to start...

AMCP server process started but port check failed. Continuing anyway. ..

A VLLM server does not appear to be accessible at http://localhost:30004/v1

A Auto-launching Search Agent VvLLM server: rl-research/DR-Tulu-8B on port 30004 (GPU 0)...
A Launching VLLM server for model rl-research/DR-Tulu-8B on port 30004...

i VLLM output for rl-research/DR-Tulu-8B will be logged to /tmp/vllm_server_30004.log
~ Waiting for vLLM server to become ready (this may take a few minutes)...

o Still waiting for vLLM server (30s)...

/ VLLM server started (PID: 15462)

# Starting interactive chat...

® 18/11, 12:17 A hamishivison [ ~/Programming/dr-tulu/rl ts beaker « -zsh



Practical example: DR Tulu

Rubric Rewards

| S(z,y;) =W kz:lwaUDGE(rk L Yi) |
Training 3 P°|ICY yl » Y25 - Generate Evolving
Data 71'9 Rubrics 7




Practical example: DR Tulu

User query

Describe how genetically
engineering T cells could be

used as an anti-inflammatory
therapy for IBD by changing -
cytokine signaling between T

cells and macrophages.

[a l Generate rubrics with search

70 0,
Persistent rubrics
=

policy at step t

) Cites “IL-10-engineered T
cells reduced colitis severity”

() States ‘engineering T cells to
overexpress IL-10 suppresses
macrophage TNF-a”



Practical example: DR Tulu

User query Agent environment

® @ [

Web Scholar  Google

Describe how genetically

engineer ing T cells could be Browsing  Search  Search

used as an anti-inflammatory ,/ /-

therapy for IBD by changing -

cytokine signaling between T
cells and macrophages.

Y1 [...] T cells suppresses macrophage

[2 | Generate rubrics with search TNF-a via STAT3 activation |...]

Persistent rubrics

Y2 [...] systemic IL-6 did not increase
: and no cytokine-release syndrome
() Cites “IL-10-engineered T policy at stept was observed [...]

cells reduced colitis severity”
Y3 [...] An anti-inflammatory signal

() States ‘engineering T cells to increases a pro-inflammatory

overexpress IL-10 suppresses signal, which surprisingly results in
macrophage TNF-a” reducing inflammation overall [...]



User query

Describe how genetically
engineering T cells could be
used as an anti-inflammatory
therapy for IBD by changing
cytokine signaling between T
cells and macrophages.

(a lGenerate rubrics with search

Persistent rubrics

) Cites “IL-10-engineered T
cells reduced colitis severity”

States “engineering T cells to
overexpress IL-10 suppresses
macrophage TNF-a”

ﬁ

policy at step t

Practical example: DR Tulu

Agent environment

® @ @

Web Scholar  Google
Browsing  Search  Search

//

Model rollouts

Y1

Y3

[...] T cells suppresses macrophage

TNF-a via STAT3 activation [...] . Rubric-based scoring

[...] systemic IL-6 did not increase K
and no cytokine-release syndrome ~ S(z,y) = Z wy, - JUDGE(Tk, y)
was observed |[...] k=1

[...] An anti-inflammatory signal
increases a pro-inflammatory

signal, which surprisingly results in Updates
reducing inflammation overall [...] S S > 7T9t_|_ 1




User query Agent environment

® B @

Web Scholar  Google

Describe how genetically

engineering T cells could be Browsing  Search  Search

used as an anti-inflammatory / /«

therapy for IBD by changing -

cytokine signaling between T
cells and macrophages.

Y1 [...] T cells suppresses macrophage

[2 | Generate rubrics with search TNF-a via STAT3 activation |...]

Persistent rubrics

Y2 [...] systemic IL-6 did not increase
: and no cytokine-release syndrome
() Cites “IL-10-engineered T policy at stept was observed [...]

cells reduced colitis severity”
Y3 [...] An anti-inflammatory signal

() States ‘engineering T cells to increases a pro-inflammatory
overexpress IL-10 suppresses signal, which surprisingly results in
macrophage TNF-a” reducing inflammation overall [...]

Practical example: DR Tulu

Rubrics
generation

>

by contrasting
rollouts

New rubrics per instance

™

r2

The response states that IL-10
from engineered T cells suppresses

macrophage TNF-a via STAT3
activation.

The response states that systemic
IL-6 did not increase and no
cytokine-release syndrome was
observed after infusion.

The response contains wrong
claims that an anti-inflammatory
cytokine upregulates...

k—’ Rubric-based scoring

K
~  S(z,y) =Y wy - JUDGE(r,y)
k=1

k' S Updates>




User query

Describe how genetically
engineering T cells could be
used as an anti-inflammatory
therapy for IBD by changing
cytokine signaling between T
cells and macrophages.

(a lGenerate rubrics with search

Persistent rubrics

9 Cites “IL-10-engineered T
cells reduced colitis severity”

() States ‘engineering T cells to
overexpress IL-10 suppresses
macrophage TNF-a”

q

Model rollouts

Y1

Y3

Agent environment

® B Q[

Web Scholar  Google
Browsing  Search  Search

I/

[...] T cells suppresses macrophage
TNF-a via STAT3 activation |[...]

[...] systemic IL-6 did not increase
and no cytokine-release syndrome
was observed [...]

[...] An anti-inflammatory signal
increases a pro-inflammatory
signal, which surprisingly results in
reducing inflammation overall [...]

Practical example: DR Tulu

The rubric buffer is also used for generating rubrics Rubric buffer

A

Rubrics
generation

by contrasting
rollouts

>

New rubrics per instance

™

r2

Persistent Rubrics:

<
%
oo;é Rubrics collected during training:

The response states that IL.-10

from engineered T cells suppresses
\—’ Rubric-based scoring

macrophage TNF-a via STAT3
activation.
K
~ Sz,y) = 2 wg - JUDGE(Tk, y)

The response states that systemic
IL-6 did not increase and no
cytokine-release syndrome was

observed after infusion. k=t

The response contains wrong

claims that an anti-inflammatory

cytokine upregulates... k, S Updates > 7T9 t41




Practical example: DR Tulu

ASearcher-Web-7B

o [ WebThinker-32B-DPO
®  mmm Dr.Tulu-8B (Ours)
. OpenAl Deep Research
e Perplexity Deep Research
)
e
O
O
mg% III |
- I #lle)|® I 26|63

DeepResearchBench ScholarQA CSv2



Practical example:

"Jr"OImO 3



Ai2 %

Announcing Olmo 3, a leading fully open LM suite built for reasoning,
chat, & tool use, and an open model flow—not just the final weights, but
the entire training journey.

Best fully open 32B reasoning model & best 32B base model.

Olmo 3-Base (32B) vs open peers

Benchmarks where Olmo 3-Base (32B) has the highest score among these large open models (higher is better).
See more in our technical report.

RE
945 ELXY pye 92.4
810

— LAl 507 | 728
66.5 64.9

7.4

2 53.7

40.4
i
| | |
CoQA

Practical example:

#+Olmo 3

HumanEval DROP SQUAD

B Omo3-Base (328) [} Marin328 [} Apertus70B ] awen25328 [} Gemma3278 [} Llama 31708

Olmo 3-Think (32B) vs open peers

Selected math, reasoning, coding, and QA benchmarks comparing Olmo 3-Think (32B) to strong open models of
similar scale (higher is better). See more in our technical report.

, 5 954 | 967 — —
890 ey 85.4 87.4 898 = 89.7
78.7 ' 79.2
508 pep
i

IFEval MATH BigBenchHard HumanEvalPlus OMEGA

B Omo3-Think (328) [ awen3328 [} Qwen3VL32BThinking [} Gemma 3278 Instruct [} DeepSeek R1Distill 328

274.5K




Ai2 %

Announcing Olmo 3, a leading fully open LM suite built for reasoning,
chat, & tool use, and an open model flow—not just the final weights, but
the entire training journey.

Best fully open 32B reasoning model & best 32B base model.

Olmo 3-Base (32B) vs open peers

Benchmarks where Olmo 3-Base (32B) has the highest score among these large open models (higher is better).
See more in our technical report.

RE
945 ELXY pye 92.4
810

— LAl 507 | 728
66.5 64.9

7.4

2 53.7

40.4
i
| | |
CoQA

Practical example:

#+Olmo 3

HumanEval DROP SQUAD

B Omo3-Base (328) [} Marin328 [} Apertus70B ] awen25328 [} Gemma3278 [} Llama 31708

Olmo 3-Think (32B) vs open peers

Selected math, reasoning, coding, and QA benchmarks comparing Olmo 3-Think (32B) to strong open models of
similar scale (higher is better). See more in our technical report.
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Practical example: Olmo 3

OLMo 3 Base

Long o» Think Think .
mg Midtraining e md Y DPO ma O RIVR OLMo 3 Think

| T cose @ science PDFs Ny (o Instruct Instruct
6 sconcorors & DbPO O - OLMo 3 Instruct
o " ¥ math web text
vx "‘ €2)  reasoning 5 code
: D o~ :
s ' MR 0| Mo 3RL Zero

RLVR



Practical example: Olmo 3

OLMo 3 Base

Be Midtraining me ng,?f o — PN, @ OLMo 3 Think

Instruct Instruct
%
G DPO Q" RLVR

22l code @ science PDFs

code x math web text

@ reasoning (23 code
L}

OLMo 3 Instruct

OLMo 3RL Zero



Practical example: Olmo 3

Instruction Following Math Coding .1 General Chat
o ERY
How can | detect and handle counterfeit Steve guesses randomly on a él Givenanintegern (0 < n=<10"9), . ) g— Exolain the moon landing to a 6-
8 | money? £ | multiple-choice test where o | compute the number of trailing zeroes in ‘0 y egr- T entenges.
E - There should be exaCtly 2 paragraphs E each prob|em has two choices. & n! (n faCtorial) . Your program should [] : : QL_
8 - Paragraphs should be separated with *** O | What s the probability that he .
[l . .
gl | colllecieen 0. | getsatleast half of the Prediction Tests X (Optional)
- Include the keyword “coast questions correct? ' _ ' Prediction Reference
def fun(n: int) -> int: assert fun(l) == 0 : :
: : ;‘;‘:{‘2 ::0 :::::: :3:8_2,):16 T The moon landing Along time ago, in
o s e s e Prediction  Gold Answer n /)= 2 assert fun(100) — 24 | | was when special 1969, some very
‘5 | color shifts. count += n 1 astronauts flew a brave astronauts
%’ — 0.5 \frac{1 {2} return count 'y spaceship allthe way | | rode arocket all the
@ | secure and report it to authorities, ‘ * * ' tothemoon ... way to the Moon [...]
0. | keeping the coast clear of fakes. » ~ 'l
l (constraints 1, 3, 4 constraint 2X) [ Equ|va|ence Checker ] ® Unlt teSt paSS I'ate : :
@ Binary: 1iff all tests pass ¥
. ' :
[# satisfied constraints / #constraints] e ( Score from LLM-as-a-judge ]
Reward 1.00 Reward D 0.25 X
Reward (.75 Reward @ 0.00 Reward 0.60

~ Verifiable Tasks " Non-Verifiable Tasks



Practical example: Olmo 3

We make the following improvements over vanilla GRPO:**

Zero Gradient Signal Filtering: We remove groups of instances whose rewards are all identical (i.e., a
batch with zero standard deviation in their advantage) to avoid training on samples that provide zero

gradient, similar to DAPO (Yu et al., 2025).

Active Sampling: We maintain a consistent batch size in spite of zero gradient filtering with a nove,
more efficient version of dynamic sampling (Yu et al., 2025), see OLMORL Infra for details.

Token-level loss: We use a token-level loss to normalize the loss by the total number of tokens across
the batch (Yu et al., 2025), rather than per-sample to avoid a length bias.

No KL Loss We remove the KL loss as a common practice (GLM-4.5 Team et al., 2025; Yu et al.,
2025; Liu et al., 2025b) as it allows less-restricted policy updates, and removing it does not lead to
over-optimization or destabilized training.

Clip Higher: We set the upper-bound clipping term in the loss to a slightly higher value than the lower
bound to enable larger updates on tokens, as proposed by Yu et al. (2025).

Truncated Importance Sampling: To adjust for differences between log probabilities from the inference

and training engines, we multiply the loss by the truncated importance sampling ratio, following Yao
et al. (2025).

No standard deviation normalization: When calculating advantage, we do not normalize by the standard
deviation of the group, following Liu et al. (2025b). This removes a difficulty bias, where questions with
low standard deviation in their rewards (e.g. too hard or too easy) have their advantages significantly
increased by the normalization term.

OImoRL Formulation Our final objective function includes a token-level loss, truncated importance sampling,
clip-higher, and no standard deviation in the advantage calculation:



Practical example: Olmo 3

Also used pipelineRL to significantly speed up training

88 |
86
84

82

IFEval Score

80

18t

PipelineRL (5 days)
1-Step Async (16 days)

| | | | | | | |

16

0 2 4 6 38 10 12 14 16
Runtime (days)



Practical example: Olmo 3

Mixing data prevents overfitting and collapse

—e— Mixed Data —e— |FEval Only

85.0+ Q 50 "‘
@
§ 82.5 AN A 40
W (©
30-
— 80.0 >
it S 20-
L 77.5 ®
< 10
75.0
200 400 600 800 1000 200 400 600 800 1000

Training Step Training Step



Practical example: Olmo 3

| 5 95,4 | 96.7 SR S
5.4 =5
78.7 79.2
50.8 477
i

IFEval MATH BigBenchHard HumanEvalPlus OMEGA

Olmo 3-Think (328) [ Qwen332B [ Qwen3VL32BThinking [ Gemma327Binstruct [ DeepSeek R1Distill 32B




Olmo 3

Practical example

€0°06
7€68
¢C'68

6198
I1°G8
€1'G8

90t

9100S

B CURRENT BEST RL (750)

B INITIAL DPO

mm INITIAL SFT



Practical example: Olmo 3

Olmo 3 Base

Midtraining Long context

m Instruct RL Olmo 3 Instruct
Thinking DPO Thinking RL OIlmo 3 Think

Explore the Model Flow

Click on any stage to learn more about it and download artifacts.

https://allenai.org/blog/olmo3

P Olmo 3RL Zero




Thanks for listening!

Go forth and train SOTA!

Further reading

- Always start with Sutton & Barto (chapter 13)

- Then OpenAl’s spinning up RL course is great
(https://spinningup.openai.com/en/latest/
index.html)

- Costa’s 37 implementation details of PPO is
amazing

(https://iclr-blog-track.qithub.io/2022/03/25/ppo-
implementation-details/)

- ScaleRL (Khatri et al., 2025) is a great overview of
recent approaches.



https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Thanks for listening!

Thanks to the many contributors for this work and slides:

Finbarr Timbers, Nathan Lambert, Teng Xiao, Michael
Noukhovitch, Saumya Malik, Scott Geng, Faeze Brahman,
Valentina Pyatkin, Saurabh Shah, Costa Huang, Hannaneh
Hajishirzi, H2Lab as a whole.

\Welall'got that one friend

that I’oglbs*Iike this




Thanks for listening!

Thanks to the many contributors for this work and slides:
All my code for RL training can be found on github @ open-instruct

Happy to answer further questions etc:

><] hamishiv@cs.washington.edu

@hamishivi (and most other things)



mailto:hamishiv@cs.washington.edu

Thanks for listening!
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