
Hamish Ivison

“Modern” RL for LMs
Scaling REINFORCE for the LM era

CSE573 20/11/25

First: course logistics
• This talk is a bonus!

• Current state-of-the-art in LM training.

• Not explicitly graded on this.

• Second half will be regular course content

• Will have stuff that can be asked in assignments.

• Assignment-wise:

• Programming assignment 4 due in 2 days!

• Written assignment 2 should be out soon (not sure exact time)

Hamish Ivison

“Modern” RL for LMs
Scaling REINFORCE for the LM era

CSE573 20/11/25

What is this talk about?
• Introduction to RL for LMs

• Assume very basic prior knowledge: basic idea about RL, know roughly
what an LM is.

• We will cover:

• Policy gradient basics

• PPO/GRPO basics

• Current tricks for LMs and policy gradient (DAPO, CISPO, GSPO…)

• Olmo 3 Results (If time)

What is an LM?

What is an LM?

figure credit: Xiaochuang Han

How to make an LM?

Base Model

“Pre-training”

7

8

How to make an LM? Pretraining data.

9
https://x.com/srush_nlp/status/1633509903611437058

<- TBH higher these days

How to make an LM? Pretraining data.

10

current token past tokens

How to make an LM? Pretraining objective.

11
From OpenAI GPT-2 Release: https://openai.com/index/better-language-models/

How to make an LM? Pretraining behaviour.

How to make an LM?

Base Model

Post-trained
Model

“Pre-training”

“Post-training”

12

How to make an LM? Post-training.

Follow natural language
instructions

Be aware of harmful
behaviors

Respond according to
human preference

Improve core skills

slide credit to Nathan Lambert

14

What is 2+2?

Also, can you solve (2+2+1+1)÷12? What is
2+2+2? If (n+2)!/n! = 12, what is the value of n?
What is (2-2)*2-2+2+2/2? How do you solve
2+2+2 ?+2 =212? What is (2+2+2)! ? What is
2-2+2×2^2? What is 2/2/(2/2)? Why is 2*2-2=2?
\n\nLet's go through each of these step by step:
\n\n1. **2+2**: \n \\(2 + 2 = 4 \\).\n\n2.
(2+2+1+1) ÷ 12:

Why post-train?

15

What is 2+2?

Also, can you solve (2+2+1+1)÷12? What is
2+2+2? If (n+2)!/n! = 12, what is the value of n?
What is (2-2)*2-2+2+2/2? How do you solve
2+2+2 ?+2 =212? What is (2+2+2)! ? What is
2-2+2×2^2? What is 2/2/(2/2)? Why is 2*2-2=2?
\n\nLet's go through each of these step by step:
\n\n1. **2+2**: \n \\(2 + 2 = 4 \\).\n\n2.
(2+2+1+1) ÷ 12:

Why post-train?

16

Q: What is 2+2? A:

Four. But when you differentiate it, it becomes 0.
假定你在以多高的速度移 才能追上光？

299,792,458米）
是宇宙中的速度极限，任何具有 量的物体都无法
到或超 个速度。

Why post-train?

17

What is 2+2?

2 + 2 equals 4.

+ “post-training”

Why post-train?

Base Model Initial Instr.
Model

Final
Released

Model

SFT

Offline
RL

Online
RL

Aligned
Model N+1

Reward

Merging

Instr.
Tuning

18

Post-training = a bag of techniques for adapting

Reinforcement Learning is a big one!

Base Model Initial Instr.
Model

Final
Released

Model

SFT

Offl

Online
RL

Aligned
Model N+1

Reward

Merging

Instr.
Tuning

19

Why do we need RL for LMs?
• Maximising things that are hard to maximise with next-token loss (e.g.,

preference learning)

1.	Go on a hike

	2.	Go to some coffee shops…
Skip the Coffee Shops and don’t
pack for rain

What Should I do in Seattle?

uhhhh…. Oh, the right one!

💁 💁

Why do we need RL for LMs?
• Maximising things that are hard to

maximise with next-token loss.

• Train the model on distributions
that better match its output
(“distribution drift”).

Source: https://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-2.pdf

Why do we need RL for LMs?
• Maximising things that are hard to

maximise with next-token loss.

• Train the model on distributions that
better match its output (“distribution
drift”).

• Train in a “real” inference
environment (vLLM != HF).

Source: https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-
RL-Collapse-from-the-Training-Inference-
Mismatch-271211a558b7808d8b12d403fd15edda

Why do we need RL for LMs?
• Maximising things that are hard to

maximise with next-token loss.

• Train the model on distributions that
better match its output (“distribution
drift”).

• Allows us to go beyond bound of
teacher data.

Source: Silver, David et al. “Mastering the game of Go without human
knowledge.” Nature 550 (2017): 354-359.

How do we do RL for LMs?
• Current approaches are all based on policy gradient.

• Why?

• Developed at OpenAI, OpenAI popularised RL for LMs.

• Was the main ‘go-to’ approach in past few years.

• Easier(?) to adapt to LMs: our LM is our policy, and we
directly train that.

• Policy gradient vs off-policy approaches (DQN, SAC) is 
an ongoing debate in RL-land.

How do we do RL for LMs?

source: https://www.arxiv.org/abs/2508.01329

• Current approaches are all based on policy gradient.

• Why?

• Developed at OpenAI, OpenAI popularised RL for LMs.

• Was the main ‘go-to’ approach in past few years.

• Easier(?) to adapt to LMs: our LM is our policy, and we
directly train that.

• Policy gradient vs off-policy approaches (DQN, SAC) is 
an ongoing debate in RL-land.

Policy Gradient

A crash course on policy gradient
For this, we consider a parameterised policy: a policy that can directly select
what action to take, without necessarily consulting value (or q-) functions.

Effectively, we learn to produce a probability distribution over actions given
a state.

πθ(a |s) =

 can be anything we can take gradients on! …like a LM!πθ

A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)

A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)

More basic details on gradient steps in a
bit!

Basically just: if we take these steps, we
will lower the loss associated with J(θ)

slide credit: https://introtodeeplearning.com/2018/materials/2018_6S191_Lecture1.pdf

https://introtodeeplearning.com/2018/materials/2018_6S191_Lecture1.pdf

A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)
 here is our objective function. We will set it as the ‘true’ value of the initial

state under our policy:
J(θ)

J(θ) = vπθ
(s0)

A crash course on policy gradient
We can then aim to maximise performance by just taking gradient steps:

θt+1 = θt + α ̂∇J(θt)
 here is our objective function. We will set it as the ‘true’ value of the initial

state under our policy:
J(θ)

J(θ) = vπθ
(s0)

 is the value function for our parameterised policy, and is the initial state.vπθ
s0

We could do simple gradient descent, but in practice we can plug into Adam, etc.

A crash course on policy gradient
With some math (see Sutton & Barto, Chap. 13), we can show:

∇J(θ) ∝ 𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Expectation
under our
policy Expected

return
(reward)

probability
over next
action

A crash course on policy gradient
With some math (see Sutton & Barto, Chap. 13), we can show:

∇J(θ) ∝ 𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Expectation
under our
policy Expected

return
(reward)

probability
over next
action

This is exactly the REINFORCE update!

REINFORCE: The full algorithm

Basically:

while True:
Generate a full episode (“rollout”) starting from using s0 πθ
Compute reward over the rollouts
Compute the REINFORCE loss and apply gradient

How is this instantiated for LMs?

𝔼π [Gt ∇θln(π(At ∣ St, θ))]
Gt = R(St, At)

𝔼πθ
[R(x, y)∇θln πθ(y |x)]

St = x
At = yt

We have some reward function

Our state is just the text seen so far
Our action is producing a token. 
Generating a full answer = episode.

How is this instantiated for LMs?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

In practice, we draw prompts (x) from a dataset (D), and sample completions (y)
from our model, and do this in batches:

How is this instantiated for LMs?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

In practice, we draw prompts (x) from a dataset (D), and sample completions (y)
from our model, and do this in batches:

reward logprobs of
response

over
responses

over
prompts over

batch

How is this instantiated for LMs?

slide credit: Hannaneh Hajishirzi

Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

Baselining & Advantage

Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

(R(y, x) − b)∇θln πθ(y |x)

Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)

Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)
We call this form of normalising the advantage function:

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

Reduce variance: baselining
Core idea: try to normalise our reward as much as possible.

Most common choice for baseline: value estimate

(R(y, x) − b)∇θln πθ(y |x)

We call this form of normalising the advantage function:

lowest poss.
variance if we

knew V exactly!

(R(y, x) − ̂Vθ′￼

(x, y<t))∇θln πθ(y |x)

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

TD residual - “how much better than expected will we do taking a particular action”

TD Residual?
δt = rt + γ ̂V(st+1) − ̂V(st)

TD residual - “how much better than expected will we do taking a particular action”

This should be familiar…

TD Residual?

δt = rt + γ ̂V(st+1) − ̂V(st)

Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)
TD residual - “how much better than expected did we do?”

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

Other forms of estimating advantage

PPO: Use Generalised Advantage Estimation (GAE)

δt = rt + γ ̂V(st+1) − ̂V(st)

̂At =
∞

∑
l=0

(γλ)l δV
t+l

TD residual - “how much better than expected did we do?”

note that γ is usually set to 1, λ to 0.95 for RL w/ LMs!
We also typically normalise the advantages within the
batch (whitening)

we use a learnt value function

Aθ′￼

(x, y) = R(x, yt) − ̂Vθ′￼

(x, y<t)

How to estimate advantage?
GRPO (Shao et al 2024): Use Group Estimates

How to estimate advantage?

Aj =
R(x, yj) − mean(RG)

std(RG)

No value estimation needed! Just take multiple samples per prompt and
use average improvement over the group as advantage.

prompt (x)

y1

y2

y3

G

GRPO (Shao et al 2024): Use Group Estimates

How to estimate advantage?
RLOO (Ahmadian et al 2024): Use leave-one-out estimate

How to estimate advantage?

Aj = R(yj, x) −
1

G − 1 ∑
i≠j

R(y(i), x)

Use average of other samples from the same prompt.

prompt (x)

y1

y2

y3

G

RLOO (Ahmadian et al 2024): Use leave-one-out estimate

How to estimate advantage?
REINFORCE++ (Hu et al. 2025): Use batch estimate (no groups!)

How to estimate advantage?

Just normalise across everything in batch. Commonly done anyway
(“whitening”).

prompt 2 (x)

y1

y2

y3

Aj =
R(x, yj) − mean(R)

std(R)
prompt 3 (x)

prompt 1 (x)

REINFORCE++ (Hu et al. 2025): Use batch estimate (no groups!)

How to estimate advantage?
VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates

How to estimate advantage?

No value estimation
needed! Just take
multiple samples per
~token and use those!

prompt (x)

y1

y2

y3

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates

How to estimate advantage?

No value estimation
needed! Just take
multiple samples per
~token and use those!

VinePPO (Kazemnejad et al 2024): Use Monte Carlo Estimates

A summary of advantage estimates

𝔼x∼D,y∼πθ(.|x)[(A(y, x)∇θlogπθ(y |x)]

source: VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment (Kazemnejad et al 2024)

Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

Going beyond REINFORCE

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

✅

✅

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Going beyond REINFORCE

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

✅

✅

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Importance Sampling & Off-
Policy data

Revisiting REINFORCE

Cannot reuse old data! -> can we get more efficient?

What if we re-used our old data anyway?

Well, our problem is we are doing our loss assuming sampling from our
current policy…

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

R(x, yi)∇θln πθ(yi |x)]

Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[f(τ)] = 𝔼τ∼pβ[pθ(τ)

pβ(τ)
f(τ)]

Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[f(τ)] = 𝔼τ∼pβ[pθ(τ)

pβ(τ)
f(τ)]

some function on
trajectories over
policy

Train on “old” samples w/ IS
We can reuse old samples with importance sampling!

𝔼τ∼pθ
[f(τ)] = 𝔼τ∼pβ[pθ(τ)

pβ(τ)
f(τ)]

some function on
trajectories over
policy Same function, but

now we drawing
trajectories from diff
policy, and reweight
accordingly!

Applying IS to REINFORCE
We can apply this directly to reinforce! Our distribution is just the older policy.

𝔼x∼D,y∼πθ(.|x) . . . ln πθ(yi |x)

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)

Applying IS to REINFORCE
We can apply this directly to reinforce! Our distribution is just the older policy.

𝔼x∼D,y∼πθ(.|x) . . . ln πθ(yi |x)

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)

problem: if the ratio
gets too crazy, our
estimate ‘blows’ up.

Applying IS to REINFORCE
Main fix: just stay within some “safe” region!

source: https://avandekleut.github.io/ppo/

TRPO: Keep within some KL constraint

s.t. 𝔼̂t [KL [πθold(⋅ ∣ st), πθ(⋅ ∣ st)]] ≤ δ

Don’t let the policy stray too far!

Requires some more complex techniques to solve…

𝔼x∼D,y∼πθold(.|x) . . .
ln πθ(yi |x)

ln πθold
(yi |x)

Schulman et al. 2016

PPO: just clip the ratio!
Use the same importance sampling technique:

But now just clip the ratio to avoid moving too far:

L = 𝔼̂ [min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]
Why min on top of clip? Because if the estimate would make advantage higher,
its okay - we just want to be pessimistic about true advantage.

ri =
ln πθ(yi |x)

ln πθold
(yi |x)

Schulman et al. 2017

Standard PPO = REINFORCE+clip+advantage

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

ri =
ln πθ(yi |x)

ln πθold
(yi |x) Ai(x, y) = R(y, x) − ̂Vθ′￼

(x)

Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵlower,1 + ϵhigher) ̂Ai)]
DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.

Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵlower,1 + ϵhigher) ̂Ai)]
DAPO (Yu et al 2025): Uncouple the clipping parameter, and raise the higher one.

Basically: allow larger updates when raising token probabilities, but don’t further
decrease the lower bound. 
Minimax paper goes further and sets to infinity to avoid lower bound clipping!ϵlower

Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ), clip(ri(θ),1 − ϵlower,1 + ϵhigher)) ̂Ai]
CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.

Can we improve the IS further?

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ), clip(ri(θ),1 − ϵlower,1 + ϵhigher)) ̂Ai]
CISPO (Minimax 2025): directly clip ratio, instead of overall advantage.

Basically: directly clip the ratio, to allow large advantages to still have some
effect - even when lots of clipping might be happening.

Can we improve the IS further?
GSPO (Zheng et al 2025): use sequence-level importance sampling instead of
token-level.

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (si(θ) ̂Ai, clip(si(θ),1 − ϵ,1 + ϵ) ̂Ai)]
si(θ) = (πθ(yi ∣ x)

πθold
(yi ∣ x))

1
|yi |

= exp(1
|yi |

|yi|

∑
t=1

ln
πθ(yi ∣ x)

πθold
(yi ∣ x))

Can we improve the IS further?
GSPO (Zheng et al 2025): use sequence-level importance sampling instead of
token-level.

Basically: compute the importance ratio of the whole sequence, and then apply
the same value to each token. Reduces noise of token-to-token.

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (si(θ) ̂Ai, clip(si(θ),1 − ϵ,1 + ϵ) ̂Ai)]
si(θ) = (πθ(yi ∣ x)

πθold
(yi ∣ x))

1
|yi |

= exp(1
|yi |

|yi|

∑
t=1

ln
πθ(yi ∣ x)

πθold
(yi ∣ x))

Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

A(x, yi)∇θln πθ(yi |x)]

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

✅

✅

Going beyond REINFORCE

Issues:

• High variance

• Reward scale can cause issues… (consider neg. vs pos. reward)

• We can only use samples directly from our current loop

✅

✅

✅

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

Going beyond REINFORCE

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

ri =
ln πθ(yi |x)

ln πθold
(yi |x) Ai(x, y) = R(y, x) − ̂Vθ′￼

(x)

One last detail: KL penalty
In practice, we sometime also apply a KL penalty to the reward:

However, these days often the KL penalty is completely removed. 
So, I’m going to skip over this.

source: https://spinningup.openai.com/en/latest/algorithms/ppo.html

Backing up to the full algorithm

Backing up to the full algorithm

slide credit: Hannaneh Hajishirzi

Backing up to the full algorithm

slide credit: Hannaneh Hajishirzi

Adapting for LMs

Adapting for LMs

1. LM inference is slow. How can we speed things up?

2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi

Speeding up inference.
Lots of work done on speeding up inference by great teams focussed on
inference-only settings. Much of this can be applied in the RL setting!

Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and
training! (Yao et al, 2025)

We are sampling via vllm, but computing our logprobs in our training code.

Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and
training!

Is this problem familiar?

Speeding up inference: logprob mismatch.
One big issue: logprob computation can mismatch between inference and
training!
We apply the same solution as we did for training on old data: importance
sampling!

Speeding up inference: logprob mismatch.
This can be the difference between collapse and success. 
Empirically, I find it more important the more off-policy you go.

source: Yao et al. 2025

Speeding up inference: logprob mismatch.
More recently: maybe just using FP32 precision for LM head works?

source: Minimax 2025

Speeding up inference: logprob mismatch.
More recently: maybe just using FP16 precision fixes all these issues???

only stable when:

1. FP32 vllm,
BF16 training. 
 
2. FP16 vllm,
FP16 training

source: Qi et al 2025

Speeding up inference: logprob mismatch.
Even more recently: maybe theres just bugs in the inference code????

source: https://x.com/RichardYRLi/status/1984858850143715759
source: Liu et al 2025

Speeding up inference: logprob mismatch.
Even more recently: maybe theres just bugs in the inference code????

😵💫

Speeding up inference: async RLHF
Let’s review the standard algorithm for PPO/REINFORCE:

while True:
Generate a full episode (“rollout”) starting from using s0 πθ
Compute reward over the rollouts
Compute the loss and apply gradient (potentially mult. steps)

Speeding up inference: async RLHF
We can visualise this flow like:

Gen. GPUs

Train GPUs

Generating
rollouts

compute
logprobs

training
weight
sync

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

IDLE

IDLE IDLE

IDLE

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 1: Overlap training and inference! This also makes our overall algorithm faster 
if we have enough compute!

Drawback: our inference is now 1 step off our training (off-policy). In practice, 
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 1: Overlap training and inference! This also makes our overall algorithm faster 
if we have enough compute!

Drawback: our inference is now 1 step off our training (off-policy). In practice, 
this doesn’t hurt until > 8 steps. Applying importance sampling also helps!

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 2: Overlap training and inference, and continuously generate samples when
inference compute frees up.

What do we do with interrupted generations? Just recompute KV cache and then
continue.

Speeding up inference: async RLHF

Fix 2: Overlap training and inference, and continuously generate samples when
inference compute frees up.

This is exactly what AReal does!

source: Fu et al 2025

Speeding up inference: async RLHF

Gen. GPUs

Train GPUs

Fix 3: Overlap training and inference, and continuously generate samples when
inference compute frees up, and don’t recompute KV cache!

Run a training step whenever we have a batch available.
Scalable wrt inference compute.

Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when
inference compute frees up, and don’t recompute KV cache!

This technique was proposed by pipelineRL.

source: Piché et al 2025

Speeding up inference: async RLHF

Fix 3: Overlap training and inference, and continuously generate samples when
inference compute frees up, and don’t recompute KV cache!

This technique was proposed by pipelineRL. Requires being careful about
multithreading!

source: https://x.com/finbarrtimbers/status/1973382120451060161

Adapting for LMs

1. LM inference is slow. How can we speed things up?

2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi

✅

Dealing with LM sequences
In practice, we have some maximum length we allow models to decode to.
This means some sequences will be unfinished.

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book
Yeah, no worries!
We should go and do this other thing tha

Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book
Yeah, no worries!
We should go and do this other thing tha

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k
token range)

Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead and book
Yeah, no worries!
We should go and do this other thing tha

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k
token range)

MASKED

MASKED

Dealing with LM sequences
Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k
token range)

source: Yu et al. 2025

Dealing with LM sequences

s1
s2
s3
s4
s5

maxlen

Sure, I can do that!
Sure, sounds like a plan!
Sure, how about we go ahead </think> Yes!
Yeah, no worries!
We should go and do this </think> Good!

Vanilla: Treat and score as usual. Trains model to use only up to maxlen. 
Overlong filtering (DAPO): Filter and remove samples that don’t finish.
Prevents penalising model for strategies that might be correct, but didn’t finish
[debated]. 
Interruptions (ScaleRL): Apply budget forcing and make the model stop
(append “okay, now to stop thinking and give an answer</answer>” in 10-12k
token range).

Dealing with LM sequences
Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

Basically subtract (or add) how far from “gold” length we are!

gold len actual len

Dealing with LM sequences
Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

Dealing with LM sequences
Length penalties can also be used to control LM generation length, but these aren’t
super widely applied in the open?

No generalisation
beyond training
lengths!

Adapting for LMs

1. LM inference is slow. How can we speed things up?

2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPO)?

slide credit: Hannaneh Hajishirzi

✅

✅

Dealing with never getting it right.
With GRPO, we might get all advantages in a group being 0 if they get the same
score!

prompt (x)

y1

y2

y3

G

1

1

1

R A

0

0

0 Aj =
R(x, yj) − mean(RG)

std(RG)

Solution: just throw these samples out!

𝔼x∼D,y∼πθ(.|x)[
1
B ∑

1
T

yT

∑
yi

[min (ri(θ) ̂Ai, clip(ri(θ),1 − ϵ,1 + ϵ) ̂Ai)]

Throwing samples out has issues…
If we throw these samples out, we get a reduced batch size over time…

Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

g3

g5

g6

g10

inference batch
train batch

σ>0

σ>0 σ>0

σ>0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

g13

g14

g15

σ>0

σ>0

σ=0

Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

g3

g5

g6

g10

inference batch
train batch

σ>0

σ>0 σ>0

σ>0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

g13

g14

g15

σ>0

σ>0

σ=0

Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

g3

g5

g6

g10

inference batch
train batch

σ>0

σ>0 σ>0

σ>0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

g13

g14

g15

σ>0

σ>0

σ=0

resample if needed.

Pulling new samples.
Fix 1: Generate more samples than we need, and downsample to form a
batch (“dynamic sampling”, DAPO)

source: https://thudm.github.io/slime/examples/glm4-9B.html

https://thudm.github.io/slime/examples/glm4-9B.html

Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g3 g5

g6 g10

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

time

g3 g5

g6

g3 g5

g6

g3

Inf.
Eng.

train 
batch

send to GPU

Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g3 g5

g6 g10

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

time

g3 g5

g6

g3 g5

g6

g3

Inf.
Eng.

train 
batch

send to GPU

Pulling new samples.
Fix 2: Actively pull samples from inference engine on demand until we fill our
batch (“active refill”, Olmo 3 paper)

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g3 g5

g6 g10

σ=0 σ>0

σ>0σ>0

σ=0

σ=0

σ=0

σ=0

σ>0 σ>0 σ=0 σ=0

time

g3 g5

g6

g3 g5

g6

g3

Inf.
Eng.

train 
batch

send to GPU

1. Inference engine always running, so no
resample requests

2. Don’t oversample, but rather accumulate

Adapting for LMs

1. LM inference is slow. How can we speed things up?

2. How do we deal with long sequences?

3. How do we deal with zero-advantage groups (GRPO)?

✅

✅

✅

Putting it all together.

You now know everything!
Many modern papers are just a combination of the things I have just covered.

DAPO
- use clip-higher in importance clipping 
- filter out too long generations 
- oversample prompts to avoid small batch 
- token-level loss

You now know everything!
Many modern papers are just a combination of the things I have just covered.

Dr GRPO
- use sum-and-constant loss 
- remove std dev from GRPO advantage

You now know everything!
Many modern papers are just a combination of the things I have just covered.

Minimax Paper
- Clip importance ratio only (CISPO) 
- Clip-higher 
- FP32 precision for logprob mismatch

How much does all this matter? ScaleRL
knows!
Khatri et al., 2025

Read this, and you
pretty much know
most of what you
need to know these
days.

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example: DR Tulu

Practical example:

Practical example: Olmo 3

Practical example: Olmo 3

Practical example: Olmo 3

Practical example: Olmo 3

Practical example: Olmo 3

Practical example: Olmo 3

Also used pipelineRL to significantly speed up training

Practical example: Olmo 3

Practical example: Olmo 3
Mixing data prevents overfitting and collapse

Practical example: Olmo 3

Practical example: Olmo 3

Practical example: Olmo 3

https://allenai.org/blog/olmo3

Thanks for listening!
Go forth and train SOTA!
Further reading

- Always start with Sutton & Barto (chapter 13)

- Then OpenAI’s spinning up RL course is great 
(https://spinningup.openai.com/en/latest/
index.html)

- Costa’s 37 implementation details of PPO is
amazing 
(https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/)

- ScaleRL (Khatri et al., 2025) is a great overview of
recent approaches.

https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Thanks for listening!
Thanks to the many contributors for this work and slides:

Finbarr Timbers, Nathan Lambert, Teng Xiao, Michael
Noukhovitch, Saumya Malik, Scott Geng, Faeze Brahman,
Valentina Pyatkin, Saurabh Shah, Costa Huang, Hannaneh
Hajishirzi, H2Lab as a whole.

Thanks for listening!
Thanks to the many contributors for this work and slides:

All my code for RL training can be found on github @ open-instruct

Happy to answer further questions etc:

hamishiv@cs.washington.edu

@hamishivi (and most other things)

mailto:hamishiv@cs.washington.edu

Thanks for listening!
Citations for the work discussed:

1. Levine S. Supervised Learning of Behaviors (Lecture 2). Published online August 2021.

2. Liu J, Li Y, Fu Y, Wang J, Liu Q, Shen Y. When Speed Kills Stability: Demystifying RL Collapse from the Inference-Training Mismatch. Published online September 2025.

https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-RL-Collapse-from-the-Inference-Training-Mismatch-271211a558b7808d8b12d403fd15edda

3. Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354-359. doi:10.1038/nature24270

4. Berseth G. Is Exploration or Optimization the Problem for Deep Reinforcement Learning? arXiv [csLG]. Published online 2025. http://arxiv.org/abs/2508.01329

5. Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Second. The MIT Press; 2018. http://incompleteideas.net/book/the-book-2nd.html

6. Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High-Dimensional Continuous Control Using Generalized Advantage Estimation. In: Proceedings of the International

Conference on Learning Representations (ICLR). ; 2016.

7. Shao Z, Wang P, Zhu Q, et al. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models. arXiv [csCL]. Published online 2024. http://arxiv.org/

abs/2402.03300

8. Ahmadian A, Cremer C, Gallé M, et al. Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs. arXiv [csLG]. Published online

2024. http://arxiv.org/abs/2402.14740

9. Hu J, Liu JK, Xu H, Shen W. REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models. arXiv [csCL]. Published online 2025. http://

arxiv.org/abs/2501.03262

10.Kazemnejad A, Aghajohari M, Portelance E, et al. VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment. arXiv [csLG]. Published online

2024. http://arxiv.org/abs/2410.01679

11.Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal Policy Optimization Algorithms. arXiv [csLG]. Published online 2017. http://arxiv.org/abs/1707.06347

12.Yu Q, Zhang Z, Zhu R, et al. DAPO: An Open-Source LLM Reinforcement Learning System at Scale. arXiv [csLG]. Published online 2025. http://arxiv.org/abs/2503.14476

13.MiniMax, :, Chen A, et al. MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention. arXiv [csCL]. Published online 2025. http://arxiv.org/abs/2506.13585

14.Zheng C, Liu S, Li M, et al. Group Sequence Policy Optimization. arXiv [csLG]. Published online 2025. http://arxiv.org/abs/2507.18071

15.Yao F, Liu L, Zhang D, Dong C, Shang J, Gao J. Your Efficient RL Framework Secretly Brings You Off-Policy RL Training. Feng Yao’s Notion. Published online August 2025.

https://fengyao.notion.site/off-policy-rl

16.Qi P, Liu Z, Zhou X, et al. Defeating the Training-Inference Mismatch via FP16. arXiv [csLG]. Published online 2025. http://arxiv.org/abs/2510.26788

17.Fu W, Gao J, Shen X, et al. AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning. arXiv [csLG]. Published online 2025. http://

arxiv.org/abs/2505.24298

18.Piché A, Kamalloo E, Pardinas R, Chen X, Bahdanau D. PipelineRL: Faster On-policy Reinforcement Learning for Long Sequence Generation. arXiv [csLG]. Published online

2025. http://arxiv.org/abs/2509.19128

19.Khatri D, Madaan L, Tiwari R, et al. The Art of Scaling Reinforcement Learning Compute for LLMs. arXiv [csLG]. Published online 2025. http://arxiv.org/abs/2510.13786

20.P. Aggarwal and S. Welleck. L1: Controlling how long a reasoning model thinks with reinforcement learning, 2025.

http://arxiv.org/abs/2510.13786

