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Probability Summary
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Reasoning over Time or Space

o Often, we want to reason about a sequence of observations
o Speech recognition

o Robot localization
o User attention

o Medical monitoring

o Need to introduce time (or space) into our models
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Markov Models

o Value of X at a given time is called the state

o Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

o Stationarity assumption: transition probabilities the same at all times
o Same as MDP transition model, but no choice of action
o A (growable) BN: We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

X2X1 X3 X4
P(Xt) =?
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Markov Assumption: Conditional Independence

o Basic conditional independence:
o Past and future independent given the present
o Each time step only depends on the previous
o This is called the (first order) Markov property
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Example Markov Chain: Weather

o States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):
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Bayes Nets -- Independence

o Bayes Net
o Chain Rule
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Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Markov Models (Markov Chains)

o A Markov model defines
o a joint probability distribution:

X2X1 X3 X4

§ One common inference problem:
§ Compute marginals P(Xt) for all time steps t 

XN

Joint#Distribu8on#of#a#Markov#Model#

!  Joint#distribu8on:#

!  More#generally:#

!  Ques8ons#to#be#resolved:#
!  Does#this#indeed#define#a#joint#distribu8on?#
!  Can#every#joint#distribu8on#be#factored#this#way,#or#are#we#making#some#assump8ons#
about#the#joint#distribu8on#by#using#this#factoriza8on?#

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Joint#Distribu8on#of#a#Markov#Model#

!  Joint#distribu8on:#

!  More#generally:#

!  Ques8ons#to#be#resolved:#
!  Does#this#indeed#define#a#joint#distribu8on?#
!  Can#every#joint#distribu8on#be#factored#this#way,#or#are#we#making#some#assump8ons#
about#the#joint#distribu8on#by#using#this#factoriza8on?#

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1) § Why?
§ Chain Rule, 

Indep. Assumption?
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Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

P(X2 = sun)= Â
x1

P(x1, X2 = sun)= Â
x1

P(X2 = sun|x1)P(x1)
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
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Example Run of Mini-Forward Algorithm

§ From initial observation of sun

 
§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

[Demo: L13D1,2,3]
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Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!
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Video of Demo Ghostbusters Circular Dynamics
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§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution   of the 
chain

§ It satisfies

Stationary Distributions

o For most chains:
o Influence of the initial distribution 

gets less and less over time.
o The distribution we end up in is 

independent of the initial 
distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1
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Example: Stationary Distributions

o Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:
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Application of Stationary Distribution: Web Link 
Analysis

o PageRank over a web graph
o Each web page is a possible value of a state
o Initial distribution: uniform over pages
o Transitions:

o With prob. c, uniform jump to a
 random page (dotted lines, not all shown)
o With prob. 1-c, follow a random
 outlink (solid lines)

o Stationary distribution
o Will spend more time on highly reachable pages
o E.g. many ways to get to the Acrobat Reader download 

page
o Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines 
use link analysis along with many other factors (rank 
actually getting less important over time) 20



Hidden Markov Models
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Pacman – Sonar
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Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs)
o Underlying Markov chain over states X
o You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Example: Ghostbusters HMM

o P(X1) = uniform

o P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

o P(Rij|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j 27



Video of Demo Ghostbusters – Circular Dynamics -- HMM
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Conditional Independence

o HMMs have two important independence properties:

o Markov hidden process: future depends on past via the present

o Current observation independent of all else given current state

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples

o Robot tracking:
o Observations are range readings (continuous)
o States are positions on a map (continuous)

o Speech recognition HMMs:
o Observations are acoustic signals (continuous valued)
o States are specific positions in specific words (so, tens of thousands)

o Machine translation HMMs:
o Observations are words (tens of thousands)
o States are translation options
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Filtering / Monitoring

o Filtering, or monitoring, is the task of tracking the 
distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over 
time

o We start with B1(X) in an initial setting, usually uniform

o As time passes, or we get observations, we update B(X)

o The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program
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Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob
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Inference: Find State Given Evidence

o We are given evidence at each time and want to know

o Idea: start with P(X1) and derive Bt in terms of Bt-1
o equivalently, derive Bt+1 in terms of Bt
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Background: 
Probabilistic Inference

o Probabilistic inference: compute a desired 
probability from other known probabilities 
(e.g. conditional from joint)

o We generally compute conditional 
probabilities 
o P(on time | no reported accidents) = 0.90
o These represent the agent’s beliefs given the evidence

o Probabilities change with new evidence:
o P(on time | no accidents, 5 a.m.) = 0.95
o P(on time | no accidents, 5 a.m., raining) = 0.80
o Observing new evidence causes beliefs to be updated 39



Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

40



Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
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Inference by Enumeration

o P(W)? S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35
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Inference by Enumeration
o General case:

o Evidence variables: 
o Query* variable:
o Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

× 1

Z
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.1+.15=.25
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(rain|winter)~.05+.2=.25
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Inference by Enumeration

o P(W | winter)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter)~.25
P(rain|winter)~.25
P(sun|winter)=.5
P(rain|winter)=.5
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3
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§ Obvious problems:

§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

Inference by Enumeration
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Next Topic 

o Inference in HMMs
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