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Probability Summary

. - s sk BA )
Conditional probability P(zly) = P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X2,...Xa) = P(X1)P(X2|X1)P(X3|X1,X2)...
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X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: X1Y|Z
Vz,y, 2 : P(z,y|z) = P(z|z)P(y|z)



Reasoning over Time or Space

o Often, we want to reason about a sequence of observations

o Speech recognition
o Robot localization
o User attention

o Medical monitoring

o Need to introduce time (or space) into our models



Markov Models

o Value of X at a given time is called the state

OO O®  pyy

P(X1) P(X3[X¢—1)

o Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

o Stationarity assumption: transition probabilities the same at all times
o Same as MDP transition model, but no choice of action

o A (growable) BN: We can always use generic BN reasoning on it if we
truncate the chain at a fixed length 4



Markov Assumption: Conditional Independence

o Basic conditional independence:
o Past and future independent given the present
o Each time step only depends on the previous
o This is called the (first order) Markov property



o States: X = {rain, sun}

= |nitial distribution: 1.0 sun

Example Markov Chain: Weather

= CPTP(X; | Xi):

Two new ways of representing the same CPT

Xew | Xe | P(Xe|Xea)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

rain

0.9
0.3
@ @ sun v sun
0.7

0.1




Bayes Nets -- Independence

Burglary

o Bayes Net P(¥1,22,..2n) = H P(x;|parents(X;))

o Chain Rule P(z1,22,...2n) = H P(zilzy...2i-1)



Markov Models (Markov Chains)

........ .@

o A Markov model defines
o a joint probability distribution:

P(X17X27X37X4) —

= More generally:
P(X1,Xo,....X7)=P(X1)P(X2|X1)P(X3|X2) ... P(Xp|X71_1)

N
P(X1,...,Xn) = P(X1) | | P(Xe|Xi21) = Why?

t=2 = Chain Rule,

: Indep. Assumption?
= One common inference problem: P P

= Compute marginals P(X,) for all time steps t 8



Example Markov Chain: Weather

0.9
o Initial distribution: 1.0 sun @ 03 @’
0.7

0.1

o What is the probability distribution after one step?

P(X, =sun)=Y P(x1,Xp =sun)= )Y P(Xp = sun|xy)P(x1)
X1 X1

P(XQ = SUI’]) = +
P(X, = sun|Xy = rain)P(Xy1 = rain)

+ 0.3-0.0=0.9
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Mini-Forward Algorithm

o Question: What's P(X) on some day t?

O-O-D@ -

“
‘\ :
n

Kr =y
P(x1) = known gﬂ\;}»wﬂ
P(xzy) = ) Plwi1,m)

Tt—1

Ti_ ) ) 12
b=l \Forward simulation



Example Run of Mini-Forward Algorithm

= From initial observation of sun

(00) (o1) (e ) {oss ) =={o2s

P(X)) P(X5) P(X5) P(X,) P(X.)

= From initial observation of rain

(10) (o7) {os2) {oara ) =b{ozs)

P(X)) P(X5) P(X5) P(X) P(X.)

= From yet another initial distribution P(X;):

L) = {02

P(X)) P(X.)
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[Demo: L13D1,2,3]



Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!
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Video of Demo Ghostbusters Circular Dynamics
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Stationary Distributions

o For most chains: = Stationary distribution:
o Influence of the initial distribution

= The distribution we end up with is called
gets less and less over time.

the stationary distribution P, of the

o The distribution we end up in is chain
independent of the initial = |t satisfies
distribution

Poo(X) = Poy1(X) = ZP(XICC)POO(ZU)




Example: Stationary Distributions

o Question: What's P(X) at time t = infinity?

O-O-D@ -

Py (sun) = P(sun|sun)Ps (sun) + P(sun|rain) P (rain)
Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain)
P (sun) = 0.9P (sun) + 0.3 P (rain)

Py (rain) = 0.1 P (sun) 4+ 0.7 Py (rain)

Py (sun) = 3P (rain)

Poo(rain) = 1/3 P (sun)

Py (sun) = 3/4
Py (rain) =1/4

, =

Also: P (sun) 4+ Ps(rain) =

P(X: | X¢-1)

0.9

0.1

0.3

0.7
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Application of Stationary Distribution: Web Link
Analysis

o PageRank over a web graph

o Each web page is a possible value of a state
o Initial distribution: uniform over pages

o Transitions:

o With prob. ¢, uniform jump to a

random page (dotted lines, not all shown)
o With prob. 1-c, follow a random

outlink (solid lines)

o Stationary distribution
o Will spend more time on highly reachable pages
o E.g. many ways to get to the Acrobat Reader download
page
o Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines

use link analysis along with many other factors (rank
actually getting less important over time)




Hidden Markov Models
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Pacman — Sonar
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Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs) O
o Underlying Markov chain over states X . 0
o You observe outputs (effects) at each time step (0

OasOnOn Ol
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Example: Weather HMM

ofii

P(X; | X¢-1)

Raing, Rain, Raing

P(E; | Xy)

Umbrella, Umbrella, Umbrella,,

o An HMM is defined by:
o Initial distribution: P(X;)
o Transitions: P(X; | Xi_1)
o Emissions: P(E; | X3)

Rei | Re | P(R¢|R¢1) R¢ U: | P(U¢|Ry)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8
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Example: Ghostbusters HMM

P(X;) = uniform

P(X|X") = usually move clockwise, but
sometimes move in a random direction or
stay in place

P(R;;| X) = same sensor model as before:
red means close, green means far away.

OasOnOn Ol

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

P(X1)

1/6

1¢-51/2

0

1/6

0

0

0

0

P(X|X =<1,2>)




Video of Demo Ghostbusters — Circular Dynamics -- HMM
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Conditional Independence

o HMMs have two important independence properties:

o Markov hidden process: future depends on past via the present

o Current observation independent of all else given current state

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]
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Real HMM Examples

o Robot tracking:

o Observations are range readings (continuous)
o States are positions on a map (continuous)

o Speech recognition HMMs:
o Observations are acoustic signals (continuous valued)
o States are specific positions in specific words (so, tens of thousands)

o Machine translation HMMs:

o Observations are words (tens of thousands)
o States are translation options
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Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B{(X) = P,(X; | e, ..., e,) (the belief state) over
time

We start with B;(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program
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Example: Robot Localization

Example from
Michael Pfeiffer

R
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.
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Example: Robot Localization

S 0
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake 33




Example: Robot Localization

Prob 0 1

t=2
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Prob

Example: Robot Localization

0

t=3
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Prob

Example: Robot Localization

0

t=4
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Prob

Example: Robot Localization

0

t=5
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Inference: Find State Given Evidence

o We are given evidence at each time and want to know
Bi(X) = P(X¢le1:t)

o ldea: start with P(X;) and derive B, in terms of B, ,

o equivalently, derive B,,, in terms of B,

38



Background:
Probabilistic Inference

o Probabilistic inference: compute a desired
probability from other known probabilities
(e.g. conditional from joint)

o We generally compute conditional
probabilities
o P(on time | no reported accidents) = 0.90
o These represent the agent’s beliefs given the evider

o Probabilities change with new evidence:

o P(on time | no accidents, 5 a.m.) = 0.95

o P(on time | no accidents, 5 a.m., raining) = 0.80
o Observing new evidence causes beliefs to be updated 39



o P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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o P(W)?

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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o P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=65

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20
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o P(W)?

Inference by Enumeration

P(sun)=.3+.1+.1+.15=.65
P(rain)=1-.65=.35

S T W P
summer | hot sun 0.30
summer | hot rain | 0.05
summer | cold sun 0.10
summer | cold rain | 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20
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Inference by Enumeration

o General case:
o Eviderlce Vgriables: Ly...Bp=e1...e X1,X0,...Xn
o Query” variable: Q

o Hidden variables: Hy...H; All variables

= Step 1: Select the = Step 2: Sum out H to get joint
entries consistent of Query and evidence
with the evidence

Ped
0.05
0.25
0.07
0.2 |
0.00 a-——_-—a
P(Q.e1...op) = 3 P(Qh1.. hrer...ep)

hi...hy ~
X1, X5,... X

* Works fine with
= We want: multiple query

variables, too

P(Qley...ex)

= Step 3: Normalize

1
><_
A

Z=ZP(Q,61°'°€k)
q

1 14
P(Qler---ex) = ZP(Q,€1“°€/€)



Inference by Enumeration

o P(W | winter)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter)?

P(sun|winter)~.1+.15=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter)?

P(rain|winter)~.05+.2=.25

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter)?

P(sun|winter)~.25
P(rain|winter)~.25
P(sun|winter)=.5
P(rain|winter)=.5

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

P(sun|winter,hot)~.1
P(rain|winter,hot)~.05

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

o P(W | winter, hot)?

P(sun|winter,hot)~.1

P(rain|winter,hot)~.05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution
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o Inference in HMMs

Next Topic
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