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Our Status in CSE573

§ We’re done with Search and planning
§ We are done with learning to make decisions
§ Probabilistic Reasoning and Machine Learning

§ Diagnosis
§ Speech recognition
§ Tracking objects
§ Robot mapping
§ Genetics
§ Error correcting codes
§ … lots more!
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Outline

§ Probability

§ Bayes Nets

§ You’ll need all this stuff for the next few 
weeks, so make sure you go over it now!
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Inference in Ghostbusters

§ A ghost is in the grid 
somewhere

§ Sensor readings tell how 
close a square is to the 
ghost
§ On the ghost: red
§ 1 or 2 away: orange
§ 3 or 4 away: yellow
§ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§  Sensors are noisy, but we know P(Color | Distance)
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Random Variables

§ A random variable is some aspect of the world about 
which we (may) have uncertainty

§ R = Is it raining?
§ T = Is it hot or cold?
§ D = How long will it take to drive to work?
§ L = Where is the ghost?

§ We denote random variables with capital letters

§ Random variables have domains

§ R in {true, false}   (often write as {+r, -r})
§ T in {hot, cold}
§ D in [0, ¥)
§ L in possible locations, maybe {(0,0), (0,1), …} 7



Probability Distributions

§ Associate a probability with each outcome

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 
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Shorthand notation:

OK if all domain entries are unique

Probability Distributions

§ Unobserved random variables have distributions

§ A distribution is a TABLE of probabilities of values

§ A probability (lower case value) is a single number

§ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint Distributions
§ A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome): 

§ Must obey:

§ Size of distribution if n variables with domain sizes d?

§ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Events

§ An event is a set E of outcomes

§ From a joint distribution, we can 
calculate the probability of any event

§ Probability that it’s hot AND sunny?

§ Probability that it’s hot?

§ Probability that it’s hot OR sunny?

§ Typically, the events we care about 
are partial assignments, like P(T=hot)

 

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)
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The Product Rule

§ Sometimes have conditional distributions but want the joint
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The Product Rule

§ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06
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Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications
§ May not account for every variable
§ May not account for all interactions between variables
§ “All models are wrong; but some are useful.”

     – George E. P. Box

§ What do we do with probabilistic models?
§ We (or our agents) need to reason about unknown 

variables, given evidence
§ Example: explanation (diagnostic reasoning)
§ Example: prediction (causal reasoning)
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Independence
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§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

  

§ We write: 

§ Independence is a simplifying modeling assumption

§ Empirical joint distributions: at best “close” to independent

§ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

§ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
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Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily
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Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

      if and only if:

      or, equivalently, if and only if
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Conditional Independence

38

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining
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Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm
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Conditional Independence and the Chain Rule

§ Chain rule: 

§ Trivial decomposition:

§ With assumption of conditional independence:

§ We can represent joint distributions by multiplying these simpler local distributions.
§ Bayes’nets / graphical models help us express conditional independence assumptions 41



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables 
as our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
§ Hard to learn (estimate) anything empirically about more 

than a few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions
§ For about 10 min, we’ll be vague about how these 

interactions are specified
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Example Bayes’ Net: Insurance
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Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)
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Example: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

§ Variables:
§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic
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§ Variables
§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II
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Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!
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Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls 53



Bayes’ Net Semantics
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Bayes’ Net Semantics

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 56



Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

A1

X

An
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Probabilities in BNs

§ Why are we guaranteed that setting

    results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

      à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies 58



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)
P(A|B,E)
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Example: Traffic

§ Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

§ Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Causality?

§ When Bayes’ nets reflect the true causal patterns:
§ Often simpler (nodes have fewer parents)
§ Often easier to think about
§ Often easier to elicit from experts

§ BNs need not actually be causal
§ Sometimes no causal net exists over the domain 

(especially if variables are missing)
§ E.g. consider the variables Traffic and Drips
§ End up with arrows that reflect correlation, not causation

§ What do the arrows really mean?
§ Topology may happen to encode causal structure
§ Topology really encodes conditional independence
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Bayes Rule
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Bayes’ Rule

§ Two ways to factor a joint distribution over two variables:

§ Dividing, we get:

§ Why is this at all helpful?

§ Lets us build one conditional from its reverse
§ Often one conditional is tricky but the other one is simple
§ Foundation of many systems we’ll see later (e.g. ASR, MT)

§ In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

§ Example: Diagnostic probability from causal probability:

§ Example:
§ M: meningitis, S: stiff neck

§ Note: posterior probability of meningitis still very small
§ Note: you should still get stiff necks checked out!  Why?

Example
givens

P (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)
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Quiz: Bayes’ Rule

§ Given:

§ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3
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Quiz: Bayes’ Rule

§ Given:

§ What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

P(sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
P(rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
P(sun|dry)=12/13
P(rain|dry)=1/13
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Uncertainty Summary
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Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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