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Our Status in CSE57/3

= We' re done with Search and planning
= We are done with learning to make decisions

" Probabilistic Reasoning and Machine Learning
= Diagnosis
= Speech recognition
® Tracking objects
= Robot mapping
= Genetics
" Error correcting codes
= .. lots more!




Outline

= Probability

= Bayes Nets

= You'll need all this stuff for the next few
weeks, so make sure you go over it now!




Inference in Ghostbusters

= Aghostisin the grid
somewhere
= Sensor readings tell how
close a square is to the
ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?

= T=lIsit hotor cold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters

= Random variables have domains

= Rin {true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, «)

= Lin possible locations, maybe {(0,0), (0,1), ...} 7



Probability Distributions

= Associate a probability with each outcome

= Temperature: " Weather:
P(T) e v
. A 8 [ o
= :
hot 0.5 , > O rain 0.1
cold | 0.5 g fog 0.3
8B oo 009




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x)>0

and

Y P(X=z)=1 .



Joint Distributions

A joint distribution over a set of random variables: X4, Xo,... Xy
specifies a real number for each assignment (or outcome):

P(X{=x21,Xo=xo,... Xpn = xn)

P(T, W)
P(x1,xo,...2n)
T W P
" Must obey: P(xq1,25,...2n) >0 hot | sun | 04
hot | rain 0.1
Z P(wlaCUQa . x’n) =1 cold | sun 0.2
(21,22,...2n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!
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Events

= An event is a set E of outcomes

P(E)Y= )  P(z1...zn)

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 ———
P(t) =Y P(t,s)

—
P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=uz1,Xp=u1)p)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4
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Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = 20

P(T,W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— 5. T = 2
PW=sT=c)= L W=8T=c) 02
P(T = c¢) 0.5

_——

=P(W=s,T=c)+PW=r,T=c)
=0.240.3 =0.5

= 0.4
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The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(z|y) = P(z,y) < ran="7"

S Bl |
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The Product Rule

P(y)P(zly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D w | P D w
R p wet sun 0.1 wet sun
sun | 0.8 dry | sun |09 <::> dry | sun
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
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Independence
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Independence

= Two variables are independent if:

Ve,y : P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

v,y : P(zly) = P(x)

= Wewrite: X [| Y

" |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}? 31



Example: Independence?

P{(T,W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

P>(T, W)

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6
rain 0.4
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= N fair, independent coin flips:

Example: Independence

P(X1) P(X5)

H 0.5 H 0.5

T 0.5 T 0.5
“__

—




Conditional Independence
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Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
=  P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
=  P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily
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Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z XJ_l_Y|Z

if and only if:
Vz,y,z : P(z,y|z) = P(z|z)P(y|z)
or, equivalently, if and only if

Va,y,z 2 P(z|z,y) = P(x|2)
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Conditional Independence

= What about this domain: = What about this domain:
= Traffic = Fire
= Umbrella = Smoke
= Raining = Alarm




Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining
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Conditional Independence

= \What about this domain: Y~

= Fire

- J
Smoke %
= Alarm

40



Conditional Independence and the Chain Rule

" Chain rule: P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3]|X1,X2) ...

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= We can represent joint distributions by multiplying these simpler local distributions.
= Bayes’nets / graphical models help us express conditional independence assumptions 41



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Example Bayes’ Net: Insurance
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Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

= Arcs: interactions

®» |ndicate “direct influence” between variables @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean Toothache @

direct causation (in general, they don’t!)

47



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence
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Example: Traffic

= Variables:
= R:ltrains
= T: There is traffic

= Model 1: independence 0

®
O

= Why is an agent using model 2 better?

Model 2: rain causes traffic

49



Example: Traffic Il

= \ariables
T: Traffic
R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

C: Cavity

50



= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J:John calls
= E: Earthquake!

Example: Alarm Network

N—or
®
—-—
—
=

758

51



Example: Alarm Network

= Variables
B: Burglary

N—or
®
—-—
—
=

A: Alarm goes off

758

J: John calls
E: Earthquake!

Burglary

= M: Mary calls

53



Bayes’ Net Semantics
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Bayes’ Net Semantics

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xl|aqy...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probolbi/il“ie_>s55



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

n
P(z1,x2,...zn) = || P(z;|parents(X;))
i=1

= Example: @
Toothache @

P(+cavity, 4+catch, -toothache)
=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

56



Bayes Net Representation

" Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents  values

P(X|ay...an)
= Bayes netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




Probabilities in BNs e

= Why are we guaranteed that setting

n
P(z1,x2,...zn) = || P(wz;|parents(X;))
i=1
results in a proper joint distribution?

n
= Chain rule (valid for all distributions): P(z1,22,...2n) = || P(zilzy ... zi—1)
i=1
= Assume conditional independences: P(xzi|xq,...2;_1) = P(xz;|parents(X;))

n
= Consequence:  P(zy,xo,...2n) = || P(x;parents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

58



Example: Coin Flips

P(X1) P(X>2) P(Xn)
h 0.5 h 0.5 L h 0.5
t 0.5 t 0.5 t 0.5

P(h, h,t, h) = P(h)P(h)P(t)P(h)

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs. 59



Example: Traffic

P(R)

| 1/4 P(4r, —t) = PnP(t]+r) = v*1/4

-r 3/4

P(T|R)
+t 3/4
-t 1/4

+t 1/2
-t 1/2




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a - 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)
+e | 0.002

-e | 0.998

B | E | A | P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b | -e -a 0.999

P(MIA)P(J|A)
P(AIB,E)
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= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2
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&

Example: Reverse Traffic

= Reverse causality?

P(T)

+t

9/16

7/16

P(R|T)

_

|

—

.
“' " [ ] /

+t

+r

1/3

2/3

+r

1/7

P(T, R)

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

6/7

—~

= 2
“\*JFLS
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Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(zi|xy,...2;-1) = P(=z;|parents(X;))
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Bayes Rule
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = Y9 poy

P(y)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

" |n the running for most important Al equation! 66



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P(effect)

= Example:
= M: meningitis, S: stiff neck

P(+m) = 0.0001 .

xampie
P(+s|+m) =08 o
P(+s| —m) =0.01

P(+m|+s) = LUEslEmIPGEm) P(+s| +m)P(+m) 0.8 x 0.0001

P(+s) " P(+s| + m)P(+m) + P(+s| — m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why? 67



Quiz: Bayes’ Rule

. P(D\W)
= Glven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain 0.7
dry rain 0.3

" Whatis P(W | dry) ?



Quiz: Bayes’ Rule

. P(D\W)
= Glven:
P(W) D W P
R P wet sun 0.1
un 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

" Whatis P(W | dry) ?

sun|dry) ~ P(dry|sun)P(sun) = .9*.8 = .72
rain|dry) ~ P(dry|rain)P(rain) = .3*.2 = .06
sun|dry)=12/13

P(
P(
P(
P(rain|dry)=1/13



Uncertainty Summary

e " s i al)
Conditional probability P(zly) = P(y)
= Product rule P(z,y) = P(zly)P(y)
= Chain rule P(X1,X2,.... Xn) = P(X1)P(X2|X1)P(X3]X1,X3)...

n

I POXGIXs s Xi-1)

s=]

[ X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

= XandY are conditionally independent given Z if and only if:
Vz,y, 2 : P(x,y|z) = P(z|z)P(y|z)

N\

XYz

BN lecture
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Bayes Net Representation

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents  values

P(X|ay...an)
= Bayes’ netsimplicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))
i=1




