CSE 573 PMP:
Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

Double Bandits

o Actions: Blue, Red
o States: Win, Lose

Double-Bandit MDP

-

-

No discount
10 time steps

Both states have
the same value

~

J

Ofttline Planning

o Solving MDPs is oftline planning 4 ~N

o You determine all quantities through computation No discount
o You need to know the details of the MDP 10 time steps
o You do not actually play the game! _ Y

4 N

Value

Play Red 15

Play Blue 10

- /

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

o Rules changed! Red’s win chance is different.

Let’s Play!

z(; S0 $2 SO
$2
9 $2 SO0 SO

What Just Happened?

o That wasn’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of statess € S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R

o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/

Environment

(&

Receive feedback in the form of rewards
Agent’s utility is defined by the reward function

o Basic idea:

Must (learn to) act so as to maximize expected rewards

o
o
o
o All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

Robotics Rubik Cube

o https: / /www.youtube.com / watch?v=x408pojMFOw
’ - 8

https://www.youtube.com/watch?v=x4O8pojMF0w
https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Reinforcement Learning

o Still assume a Markov decision process (MDP):
o A set of statess € S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R

o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

g

s

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

o Model-Based Idea:

o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate T'(s, a, s")
o Discover each B(s,a,s’) when we experience (s, a, s’)

o Step 2: Solve the learned MDP

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy w

Assume:y=1

Observed Episodes (Training)

Episode 1

4)
B, east, C, -1

C, east, D, -1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

' +
\D, exit, X, 10)

Episode 2

4)
B, east, C, -1

C, east, D, -1

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, -10)

Learned Model

T(s,a,s")

-

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Model-Free Learning

Direct Evaluation

o Goal: Compute values for each state under
s

o Idea: Average together observed sample
values
o Act according to w

o Every time you visit a state, write down what
the sum of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

Input Policy

Assume: y=1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

Episode 2

4 B, east, C, -1)
C, east, D, -1
D, exit, x, +10

\ J

Episode 3

4 E, north, C, -1)
C,east, D, -1
D, exit, x, +10

\ J

4 B, east, C, -1)
C, east, D, -1
D, exit, x, +10

\ J

Episode 4

4 E, north, C, -1)
C, east, A, -1
A, exit, x,-10

\ J

Output Values

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

o What's good about direct evaluation? Output Values

o It's easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

If B and E both go to C

. . under this policy, how can
o So, it takes a long time to learn their values be different?

o Each state must be learned separately

Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy n(s)
o You don’t know the transitions T(s,a,s”

o You don’t know the rewards R(s,a,s’)
o Goal: learn the state values

o In this case:

o Learner is “along for the ride”
o No choice about what actions to take

o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:

o Each round, replace V with a one-step-look-ahead layer over V

7(s)
Vo (s) =0 ® s n(s)

Vi () « ST (s, w(s),) R(s, (), 8') + V(s _s/(s)s

: S : :
o This approach tully exploited the connections between the states
o Unfortunately, we need T and R to do it!

J
A s

o Key question: how can we do this update to V without knowing T and R?

o In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

Vig1(8) < ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s’)]

o Idea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 3/1) -+ kaﬁ(s’l)

samples = R(s, m(s), 8/2) -+ vvkﬂ(sg)

samplen, = R(s, m(s), an) -+ WV,CW(S;%)

1
Vid 1(8) + -) sample;
()

Temporal Difference Learning

o Bigidea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r) (s)
o Likely outcomes s” will contribute updates more often

o Temporal ditference learning of values

o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running
average

Sample of V(s): sample = R(s,7(s),s) +~V"(s")
Updateto V(s): V7 (s) «+ (1 —a)V™(s) + (a)sample

Same update: VT(s) < V™(s) + a(sample — V™ (s))

Exponential Moving Average

o Exponential moving average
o The running interpolation update: T, = (1 — a) +Tp—1+ Q- Tn

o Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Ditference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oo o] |alo]e] (a5]

VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) + 4V (s))

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we're sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}

o Idea: learn Q-values, not values

o Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V(s) = 0, which we know is right
o Given V|, calculate the depth k+1 values for all states:

Viet1(s) mngT(s, a,s) {R(s, a,s) + nyk(s’)]

o But Q-values are more useful, so compute them instead
o Start with Qy(s,a) = 0, which we know is right
o Given Qy, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.0,5) +7 maxQy(s',a)

S

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(s,0) < Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a
S
o Learn Q(s,a) values as you go vvv
o Receive a sample (s,a,s’,r) >!4>!4! 1.00
o Consider your old estimatQ(s, a) v v
o Consider your new sample estimate: >Q€.>Q4 100

- p / 1\ ho longer policy
sample = R(s,a,s’) + v max Qs a) | aluation!

DD

Q-VALUES AFTER 1000 EPISODES

o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + () [sample]

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Demo

P
s pas

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning:
act according to current optimal (and also explore...

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

S E
o Caveats: ‘

o You have to explore enough

o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select action:s

me

Discussion: Model-Based vs Model-Free RL

o Model-Based vs. Model Free

o Active vs. Passive

50

Recap: Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A setof statess € S

o A set of actions (per state) A ﬁs
o A model T(s,a,s’) e

o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don’t know T or R

o Le. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

o Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, n* Value / policy iteration
\ Evaluate a fixed policy Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning

- _/ - _/

Model-Free Learning

o act according to current optimal (based on Q-Values)
o but also explore...

Q-Learning

o Q-Learning: sample-based Q-value iteration

Qit1(s,0) < Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a
S

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimatQ(s, a)
o Consider your new sample estimate:

- p / 1\ ho longer policy
sample = R(s,a,s’) + v max Qs a) | aluation!

o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning:
act according to current optimal (and also explore...

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

S E
o Caveats: ‘

o You have to explore enough

o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select action:s

me

Exploration vs. Exploitation

b7 7

RAND

el e
G2

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly
o With (large) probability 1-g, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower € over time
o Another solution: exploration functions

Exploration Functions

o When to explore?

o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u+ k/n

Regular Q-Update: Q(s,a) «+q R(s,a,s’) + v max Q(s', a")
Modified Q-Update: Q(s,a) <o R(s,a,s’) +~ max f(Q(s',d),N(s,d"))

o Note: this propagates the “bonus” back to states that lead to unknown states

as well! [Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Q-Learn Epsilon Greedy

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Video of Demo Q-learning — Exploration Function —
Crawler

Regret

Even if you learn the optimal
policy, you still make mistakes
along the way!

Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards
and optimal (expected) rewards
Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration

has higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training states
from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Video of Demo Q-Learning Pacman —
Tiny — Watch All

Video of Demo Q-Learning Pacman —

Tiny — Silent Train

Video of Demo Q-Learning Pacman —
Tricky — Watch All

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)

o Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

o Example features:

o Distance to closest ghost

o Distance to closest dot

o Number of ghosts

o 1/ (dist to dot)?

o Is Pacman in a tunnel? (0/1)

O vuunn. etc.

o Is it the exact state on this slide?

o Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

V(s) = wif1(s) +wafa(s) + ... + wnfn(s)
Q(s,a) = wy f1(s,a)Fwafa(s,a)+...Fwnfn(s,a)
o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

QUs,0) = wifi(s @) bwafals,)+ Aunfals,a)

o Q-learning with linear Q-functions:

transition = (s,a,r,s’)

difference = [r + 7 max Q(s, a’)] — Q(s,a)

a

Q(s,a) +— Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that were
on: disprefer all states with that state’s features

o Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) —]..OfGST(S,CL)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

) 4
o = NORTH o
r = —500
J N\

Q(s,NORTH) = +1

Q(Sla) =0

r + v max Q(s',a’) = -500+0
a

{difference = —501 >

wpor +— 4.0 + a[-501]0.5
WG ST < —1.04+ o [—501] 1.0

Q(Sa a’) — 3°OfDOT(57 CL) — 3°OfGST(Sa CL)

Video of Demo Approximate
Q-Learning -- Pacman

Q-Learning and Least Squares

40

Linear Approximation: Regression

20

f1(x)

Prediction: Prediction:

Yy = wo + wi f1(x) g = wo + wi f1(x) + wafo(x)

Optimization: Least Squares

1

2
total error =Y (y; — §:)° =3 (yi - th(w))
, k
[

. Error or “residual”
Observation Yy

Prediction jj

0 f1(x) i

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = <y - Zwkfm))
k

0 error(w)

— (y — Zwkfk($)> fm(x)
k

Owm

W = Wm + O (y - Z’wkfk(x)) fm(x)
k
Approximate g update explained:

Wm < Wm + & ["“ + max Q(S/a CL,) — Q(s, a)} fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help

New 1n Model-Free KL
Playing Atari Games

82

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than
before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Summary: MDPs and RL

Known MDP: Offline Solution

_

Goal
Compute V*, Q*, n*

Evaluate a fixed policy

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP: Model-Based
/ *use features \
Goal to generalize Technique

Compute V*, Q*, n*

Evaluate a fixed policy

-

VI/PIl on approx. MDP

PE on approx. MDP

)

Unknown MDP: Model-Free
*use features . \
Goal to generalize Technique
Compute V*, Q*, n* Q-learning
Evaluate a fixed policy Value Learning
\— J

Conclusion

o We’'ve seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Uncertainty and Learning!

