CSE 573: Artificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Review and Outline

= Adversarial Games

* Minimax search

* 0-3 search

= Evaluation functions

» Multi-player, non-0-sum
= Stochastic Games

* Expectimax

» Markov Decision Processes
» Reinforcement Learning

Agents vs. Environment

= Anagentis an entity
that perceives and acts.

= Arational agent

selects actions that
maximize its utility
function.

Percepts

Actions

Deterministic vs. stochastic
Fully observable vs. partially observable

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned

= 80% of the time, the action North takes the agent
North

(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East

= If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

0.1

0.8

0.1

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

o An MDP is defined by:

o A setofstatess e S
o A setofactionsa e A

o A transition function T(s, a, s’)
o Probability that a from s leads to s, i.e., P(s"| s, a)
o Also called the model or the dynamics

/T(sll, E, ... \

0
=0.8 Tis a Big Table!
= 8-% 11 X 4x 11 = 484 entries

/ For now, we give this as input to the agent

Markov Decision Processes

o An MDP is defined by:

o A setofstatess e S
o A setofactionsa e A

o A transition function T(s, a, s’)
o Probability that a from s leads to s, i.e., P(s"| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

4 N

R(S32, .I.\.I, 533) = '0.01 1

Cost of breathing

R(s35, N, 54,) =-1.01 R is also a Big Table!
R(ss3, E, S43) = 0.99

- For now, we also give this to the agent

Markov Decision Processes

o An MDP is defined by:

o A setofstatess e S

o A setofactionsa e A

o A transition function T(s, a, s’)
o Probability that a from s leads to s, i.e., P(s"| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon

What is Markov about MDPs?

o “Markov” generally means that given the present state, the
future and the past are independent

o For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3/|St — StaAt = Ay, Si—1 = St—1,At—1, .50 = So)

Andrey Markov
P(St_|_1 = 8/|St = S¢, At = Clt) (1856-1922)

o This is just like search, where the successor function could
only depend on the current state (not the history)

Policies

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal

policy n*: S — A

o A policy & gives an action for each state

o An optimal policy is one that maximizes
expected utility if followed

Optimal policy when R(s, a, s’) =-0.4 for
all non-terminals s

o An explicit policy defines a reflex agent

Optimal Policies

o

o o
T |
= z
oc o

Example: Racing

O O O O

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0.5

Slow

Overheated

Racing Search Tree

)
@

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Utilities of Sequences

Utilities of Sequences
o What preferences should an agent have over reward sequences?
o Moreorless? [1,2,2] or [2,3,4]

o Now or later? [0,0,1] or [1,0,0]

Discounting

o It’'s reasonable to maximize the sum of rewards
o It's also reasonable to prefer rewards now to rewards later

o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

o How to discount?

o Each time we descend a level,
we multiply in the discount once

o Why discount?

o Think of it as a gamma chance of
ending the process at every step

o Also helps our algorithms
converge

o Example: discount of 0.5
o U([1,2,3]) =1*1 + 0.5*2 + 0.25*3
o U([1,2,3]) < U([3,2,1])

Quiz: Discounting

o Given: 10 1

a b C d e
o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic

o Quiz 1: For y = 1, what is the optimal policy? |10| < | < | < | 1

o Quiz 2: For y = 0.1, what is the optimal policy? | 10| < | < | > | 1

o Quiz 3: For which y are West and East equally good when in state d?

1y=10 73

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:

» Finite horizon: (similar to depth-limited search) g

= Terminate episodes after a fixed T steps (e.g. life)

= Policy n depends on time left
= Discounting: use 0 <y<1
©.@)

U([rg,...Too]) = Z vt’rt < Rmax/(1 —)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions A
o Transitions P(s” | s,a) (or T(s,a,s”))
o Rewards R(s,a,s”) (and discount v) 53,8

o MDP quantities so far:

o Policy = Choice of action for each state
o Utility = sum of (discounted) rewards

Solving MDPs

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

(s,a,s) called a transition
T(s,a,s") = P(s” |s,a)

R(s,a,s”)

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

" The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out o

having taken action a from state s and
(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

Sis a
state

(s, a)is a
g-state

(s,a,s’) is a
transition

Snapshot Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Gridworld Q Values

Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state

o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

o Recursive definition of value: /
V*(S> — ma,aXQ*(S’ a) A””

Q*(s,a) => T(s,a, s {R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Recap: MDPs

o Search problems in uncertain environments
o Model uncertainty with transition function

o Assign utility to states. How? Using reward functions

o Decision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
o Value of a state
o Q-Value of a state
o Policy for a state

32

Recap: MDPs

o Search problems in uncertain environments
o Model uncertainty with transition function

o Assign utility to states. How? Using reward functions

o Decision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
o Value of a state
o Q-Value of a state
o Policy for a state

33

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q*(s, a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + WV*(S,)}

V*i(s) = ma?XZT(S, a,s) [R(s,a, s + ny*(s’)}

S

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Solving MDPs

o Finding the best policy 2 mapping of actions to states

Racing Search Tree

)
@

Racing Search Tree

i i i

LIEETUIE TR L]

LIETmEL]

FHEINEL]

I

Racing Search Tree

o We're doing way too much
work with expectimax!

o Problem: States are repeated

o Idea quantities: Only compute
needed once

o Problem: Tree goes on
forever
o Idea: Do a depth-limited

computation, but with
increasing depths until change

is small OEEREE THEREEIRE THERRE CRTMA AR FERE T
o Note: deep parts of the tree
eventually don’t matter if y <1

Time-Limited Values

o Key idea: time-limited values

o Define Vi(s) to be the optimal value of s if the game
ends in k more time steps

o Equivalently, it's what a depth-k expectimax would give

Fr g

3 N

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Example: y=0.9, living

Bellman Updates reward=0, noise=0.2

Viii(s) = mngT(s, a,s’) |R(s,a,s") +vVi(s')|= max Qit1(s,a)

Q1((3,3), right) =) ~T'((3,3), right, s') [R((3, 3), right, s") + yV;(s')]

= 0.8 % [0.0 + 0.9 % 1.0] + 0.1 % [0.0 + 0.9 % 0.0] + 0.1 % [0.0 + 0.9 % 0.0]

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

D

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Nf’ise =0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

A A 3 .
=S TN (
-)

.A.AA 'A .AA s

RN O T T T T I T A O O IO

VT | O O Y SO VT T O O O e VOO O |

llIllIl' I "I |AIIlI|AII' - llI'lIll . III'IIIl I'II]' . lII'IIII I |AI||

VT CRERREERI TR TR TR T

TT TT TT ?

))<=
)]
)]
)]
i) =

Value Iteration

Solving MDPs

Value Iteration

o Start with V(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vi(s) values, do one ply of expectimax from each state:

Vk+1(s)
/ / / /o
Vit1(s) & max3 T(s,a,) R(s,a,5") + 7 Vi(s))]
S

o Repeat until convergence

o Complexity of each iteration: O(S?A)

o Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

Example: Value Iteration

S:]‘ . / ' O_v’erheaterd 4
Vi | B 5%24.5%=0

Assume no discount!

" [0 0 0] Vi1(s) ¢ max 3 T(s,a,8) |R(s,a,8") + 7 Vi(s))]

S

Example: Value Iteration

V 2 S: .5*1+.5*1:1 | o ' C-)_v’erheaterd 4
! F: -10
Assume no discount!
v
" [0 0 0] Vig1(s) < max > T(s,a,5') |R(s,a,s") +~Vi(s)]
/

S

Example: Value Iteration

Overheated

Assume no discount!

v [0 0 0] Vig1(s) < max > T(s,a,8") |R(s,a,") + 7 Vi(s)]

S

Example: Value Iteration

Overheated

Assume no discount!

Viet1(8) mc?sz(s, a,s) [R(s, a,s’) + 'ka(s’)]

S

Example: Value Iteration

Assume no discount!

v [0 0 0] Vig1(s) < max > T(s,a,8") |R(s,a,") + 7 Vi(s)]

S

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(Sa (I) — ZT(S, a, S/) {R(S, a, S/) + 'Yv*(S,)} o

V*i(s) = ma?XZT(S, a,s) [R(s,a, s + ny*(s’)}

S

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

o Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S, a,s) {R(s,a, s") + ny*(s/)}

S

o Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

o Value iteration is just a fixed point solution method

o ... though the V, vectors are also interpretable as time-limited values

Convergence®

How do we know the V| vectors are going to converge?

Vi(s) Vieya(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

o Sketch: For any state V| and V,,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

o The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

That last layer is at best all Ryax

It is at worst Ry / \ /

But everything is discounted by y* that far out
So Vi and V., are at most y* max|R| different

O O O O O

So as k increases, the values converge

Recap: Markov Decision Processes

o An MDP is defined by:

o A setofstatess e S

o A setofactionsa e A

o A transition function T(s, a, s’)
o Probability that a from s leads to s, i.e., P(s"| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s")
o Sometimes just R(s) or R(s")

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We'll have a new tool soon

Recap: MDPs

o Search problems in uncertain environments
o Model uncertainty with transition function

o Assign utility to states. How? Using reward functions

o Decision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
o Value of a state
o Q-Value of a state
o Policy for a state

70

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

V*(s) = max Q*(s, a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + WV*(S,)}

V*i(s) = ma?XZT(S, a,s) [R(s,a, s + ny*(s’)}

S

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Solving MDPs

o Finding the best policy 2 mapping of actions to states
o So far, we have talked about one method

o Value iteration: computes the optimal values of states

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

T A

14
A s

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy n(s), then the tree would be simpler — only one action
per state

o ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy

V7(s) = expected total discounted rewards starting in s and
following n

o Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) +~V"(s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

O

O

O

O

Policy Evaluation

How do we calculate the V’s for a fixed policy n?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(8) < > T(s,7m(s), sH[R(s,m(s),s") + V()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

[Let’s think...

o Take a minute, think about value iteration and policy
evaluation

o Write down the biggest questions you have about them.

Policy Extraction

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?

o It’s not obvious!

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

o This is called policy extraction, since it gets the policy implied by the
values

Computing Actions from Q-Values

o Let’s imagine we have the optimal v v v -
q-values A A

N
o How should we act? A A

o Completely trivial to decide!
T R

o Important lesson: actions are easier to select from g-values than
values!

Policy Iteration

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(S, a,s) [R(S, a,s’) + 'ka(s’)}

S

o Problem 1: It's slow — O(S*A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!

o Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy , find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + vVﬁi(S/)}

Sl

O

O

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we're done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o So you want to....

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all ook the same!

o Tl
o Tl

ney basically are — they are all variations of Bellman updates
hey all use one-step lookahead expectimax fragments

o Tl

hey differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Next Topic: Reinforcement Learning]!

