
CSE 573: Artificial Intelligence

Hanna Hajishirzi
Markov Decision Processes

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Review and Outline
Outline

§ Adversarial Games
§ Minimax search
§ α-β search
§ Evaluation functions
§ Multi-player, non-0-sum

§ Stochastic Games
§ Expectimax

§ Markov Decision Processes
§ Reinforcement Learning

Agents vs. EnvironmentAgent	vs.	Environment

§ An	agent is	an	entity	
that	perceives and	acts.

§ A	rational agent
selects	actions	that	
maximize	its	utility
function.		

Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions

Deterministic vs. stochastic
Fully observable vs. partially observable

Non-Deterministic Search

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as
planned
§ 80% of the time, the action North takes the agent

North
(if there is no wall there)

§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

o An MDP is defined by:
o A set of states s Î S
o A set of actions a Î A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	……
T(s31,	N,	s11)	=	0…
T(s31,	N,	s32)	=	0.8T(s31,	N,	s21)	=	0.1T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	……
T(s31,	N,	s11)	=	0…
T(s31,	N,	s32)	=	0.8T(s31,	N,	s21)	=	0.1T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent

Markov Decision Processes

o An MDP is defined by:
o A set of states s Î S
o A set of actions a Î A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	

…
R(s32,	N,	s33)	=	-0.01…
R(s32,	N,	s42)	=	-1.01

R(s33,	E,	s43)	=		0.99
…

Cost	of	breathing

R	is	also	a	Big	Table!

For	now,	we	also	give	this	to	the	agent

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	

…
R(s32,	N,	s33)	=	-0.01…
R(s32,	N,	s42)	=	-1.01

R(s33,	E,	s43)	=		0.99
…

Cost	of	breathing

R	is	also	a	Big	Table!

For	now,	we	also	give	this	to	the	agent

Markov Decision Processes

o An MDP is defined by:
o A set of states s Î S
o A set of actions a Î A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We’ll have a new tool soon

What is Markov about MDPs?

o “Markov” generally means that given the present state, the
future and the past are independent

o For Markov decision processes, “Markov” means action
outcomes depend only on the current state

o This is just like search, where the successor function could
only depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal
 policy p*: S → A

o A policy p gives an action for each state
o An optimal policy is one that maximizes

expected utility if followed
o An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) = -0.4 for
all non-terminals s

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing
o A robot car wants to travel far, quickly
o Three states: Cool, Warm, Overheated
o Two actions: Slow, Fast
o Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees
o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

o What preferences should an agent have over reward sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

o How to discount?
o Each time we descend a level,

we multiply in the discount once

o Why discount?
o Think of it as a gamma chance of

ending the process at every step
o Also helps our algorithms

converge

o Example: discount of 0.5
o U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
o U([1,2,3]) < U([3,2,1])

Quiz: Discounting

o Given:

o Actions: East, West, and Exit (only available in exit states a, e)
o Transitions: deterministic

o Quiz 1: For g = 1, what is the optimal policy?

o Quiz 2: For g = 0.1, what is the optimal policy?

o Quiz 3: For which g are West and East equally good when in state d?

<- <- <-

<- <- ->

1g=10 g3

Infinite Utilities?!
§ Problem: What if the game lasts forever? Do we get infinite

rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Policy p depends on time left

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s0
o Set of actions A
o Transitions P(s’|s,a) (or T(s,a,s’))
o Rewards R(s,a,s’) (and discount g)

o MDP quantities so far:
o Policy = Choice of action for each state
oUtility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

MDP Search Trees
o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Snapshot Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state
o Expected utility under optimal action
o Average sum of (discounted) rewards
o This is just what expectimax computed!

o Recursive definition of value:

a

s

s, a

s,a,s’
s’

Recap: MDPs

o Search problems in uncertain environments
oModel uncertainty with transition function
oAssign utility to states. How? Using reward functions

oDecision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
oValue of a state
oQ-Value of a state
oPolicy for a state

32

Recap: MDPs

o Search problems in uncertain environments
oModel uncertainty with transition function
oAssign utility to states. How? Using reward functions

oDecision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
oValue of a state
oQ-Value of a state
oPolicy for a state

33

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Solving MDPs

o Finding the best policy à mapping of actions to states

Racing Search Tree

Racing Search Tree

Racing Search Tree

o We’re doing way too much
work with expectimax!

o Problem: States are repeated
o Idea quantities: Only compute

needed once

o Problem: Tree goes on
forever
o Idea: Do a depth-limited

computation, but with
increasing depths until change
is small

o Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the game
ends in k more time steps
o Equivalently, it’s what a depth-k expectimax would give

from s

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Bellman Updates

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Solving MDPs

Value Iteration

o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

o Repeat until convergence

o Complexity of each iteration: O(S2A)

o Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

0 0 0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Example: Value Iteration

0 0 0

2

Assume no discount!

S: .5*1+.5*1=1
F: -10

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

S: 1+2=3
F:
.5*(2+2)+.5*(2+1)=3.5

Example: Value Iteration

0 0 0

2

Assume no discount!

1 0

3.5 2.5 0

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

o Value iteration is just a fixed point solution method
o … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Convergence*

o How do we know the Vk vectors are going to converge?

o Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

o Case 2: If the discount is less than 1
o Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
o The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
o That last layer is at best all RMAX
o It is at worst RMIN
o But everything is discounted by γk that far out
o So Vk and Vk+1 are at most γk max|R| different
o So as k increases, the values converge

Recap: Markov Decision Processes

o An MDP is defined by:
o A set of states s Î S
o A set of actions a Î A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search
o We’ll have a new tool soon

Recap: MDPs

o Search problems in uncertain environments
oModel uncertainty with transition function
oAssign utility to states. How? Using reward functions

oDecision making and search in MDPs <-- Find a sequence of
actions that maximize expected sum of rewards
oValue of a state
oQ-Value of a state
oPolicy for a state

70

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Solving MDPs

o Finding the best policy à mapping of actions to states
o So far, we have talked about one method

oValue iteration: computes the optimal values of states

Policy Methods

Policy Evaluation

Fixed Policies

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy p(s), then the tree would be simpler – only one action
per state
o … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and

following p

o Recursive relation (one-step look-ahead / Bellman
equation):

p(s)

s

s, p(s)

s, p(s),s’
s’

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation
o How do we calculate the V’s for a fixed policy p?

o Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Let’s think…

o Take a minute, think about value iteration and policy
evaluation
oWrite down the biggest questions you have about them.

Policy Extraction

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?
o It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by the
values

Computing Actions from Q-Values

o Let’s imagine we have the optimal
 q-values:

o How should we act?
o Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than
values!

Policy Iteration

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

o Alternative approach for optimal values:
o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
o Step 2: Policy improvement: update policy using one-step look-ahead with

resulting converged (but not optimal!) utilities as future values
o Repeat steps until policy converges

o This is policy iteration
o It’s still optimal!
o Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy p, find values with policy evaluation:
o Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

Comparison

o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:
o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
o The new policy will be better (or we’re done)

o Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o So you want to….
o Compute optimal values: use value iteration or policy iteration
o Compute values for a particular policy: use policy evaluation
o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!
o They basically are – they are all variations of Bellman updates
o They all use one-step lookahead expectimax fragments
o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Next Topic: Reinforcement Learning!

