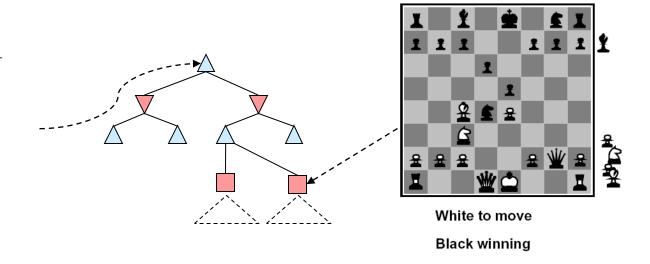
Hanna Hajishirzi Expectimax – Complex Games

CSE 573: Artificial Intelligenc

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Recap: Adversarial Search

- Resource Limitation
 - o Alpha Beta Pruning
 - o Depth-limited Search
 - o Evaluation function

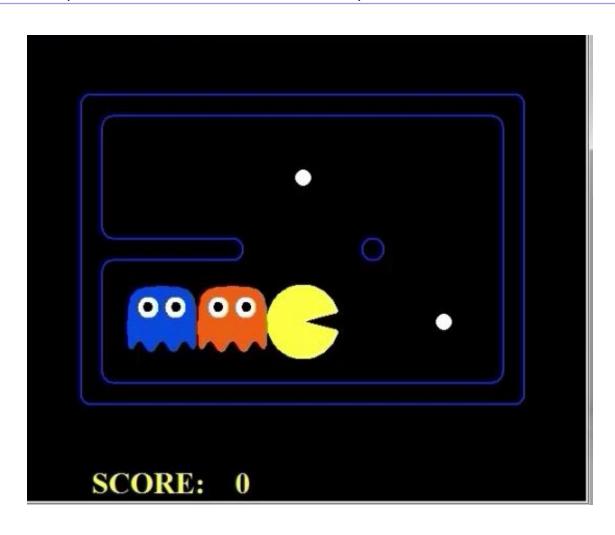


- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

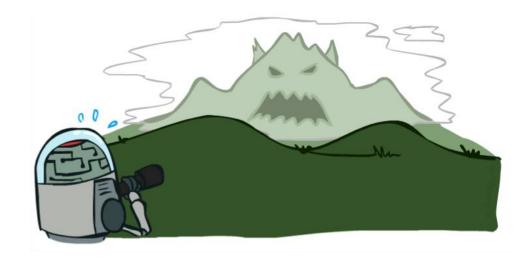
o e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Video of Demo Smart Ghosts (Coordination) – Zoomed In

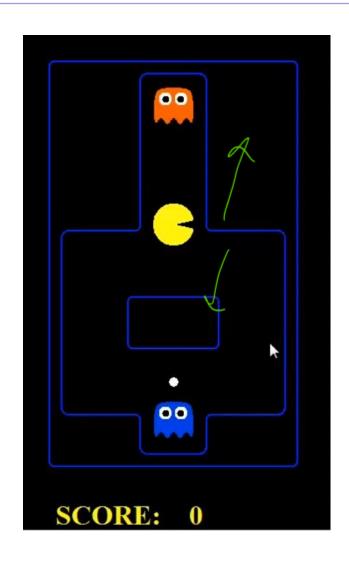


Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation



Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10)



Synergies between Alpha-Beta and Evaluation Function

- Alpha-Beta: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first

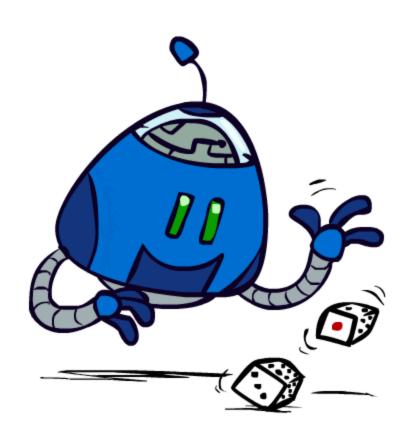
Alpha-beta:

- o Value at a min-node will only keep going down
- Once value of min-node lower than better option for max along path to root, can prune
- Hence, IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune

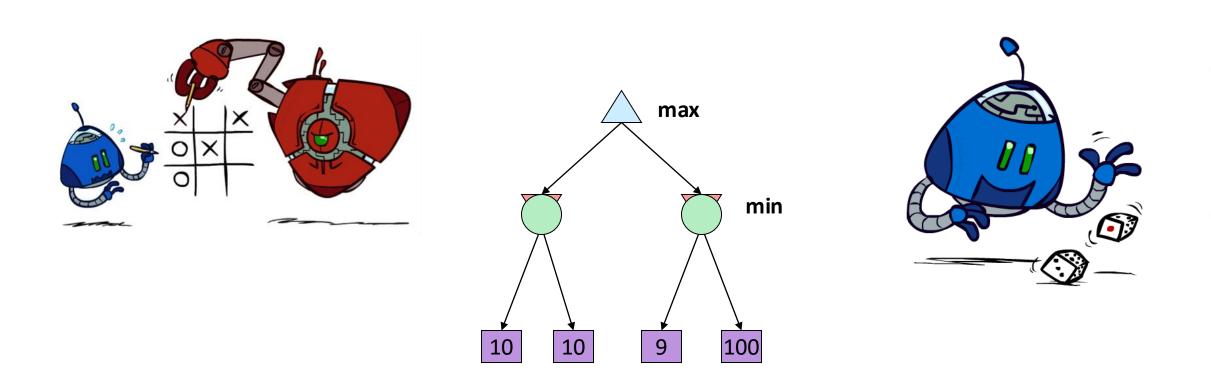
Where are we?

- Deterministic single agent environments
- Deterministic multi-agent environments
- Moving on -> Probabilistic environments

Uncertain Outcomes



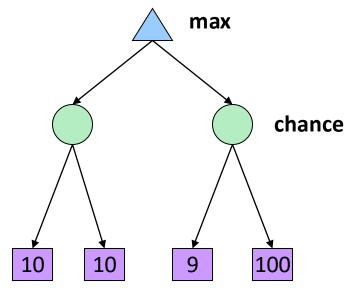
Worst-Case vs. Average Case



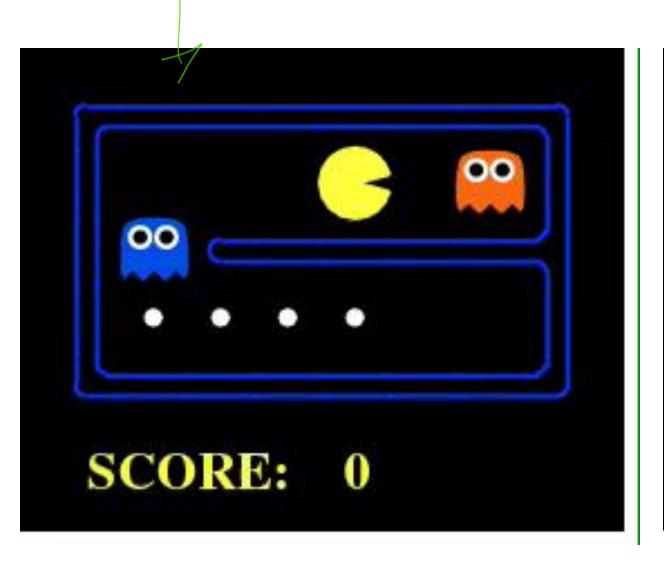
Idea: Uncertain outcomes controlled by chance, not an adversary!

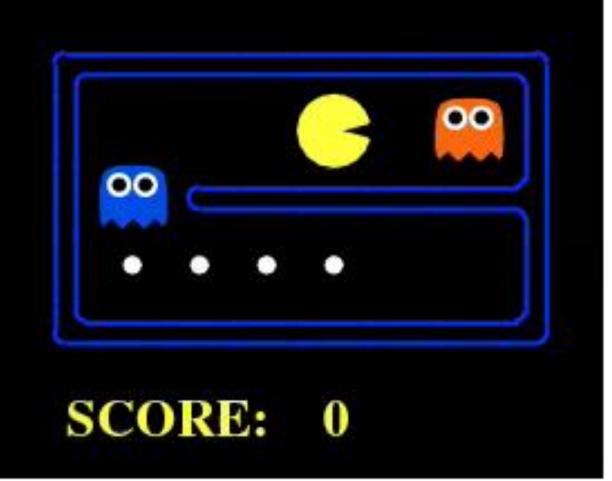
Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - o Explicit randomness: rolling dice
 - o Unpredictable opponents: the ghosts respond randomly
 - o Unpredictable humans: humans are not perfect
 - o Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - o Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - o I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes



Video of Demo Min vs. Exp (Min)



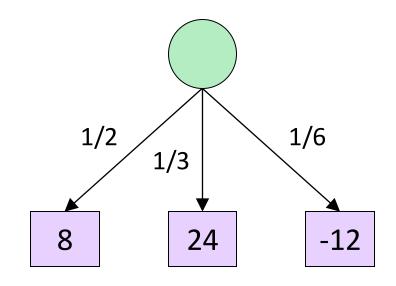


Expectimax Pseudocode

```
def value(state):
                     if the state is a terminal state: return the state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                          def exp-value(state):
   initialize v = -\infty
                                                              initialize v = 0
   for each successor of state:
                                                              for each successor of state:
       v = max(v, value(successor))
                                                                  p = probability(successor)
                                                                  v += p * value(successor)
   return v
                                                              return v
```

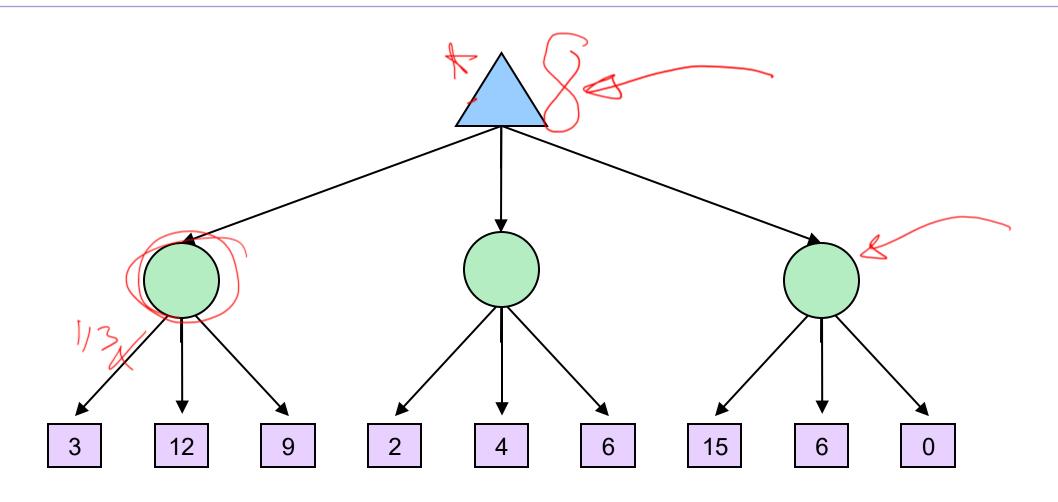
Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```

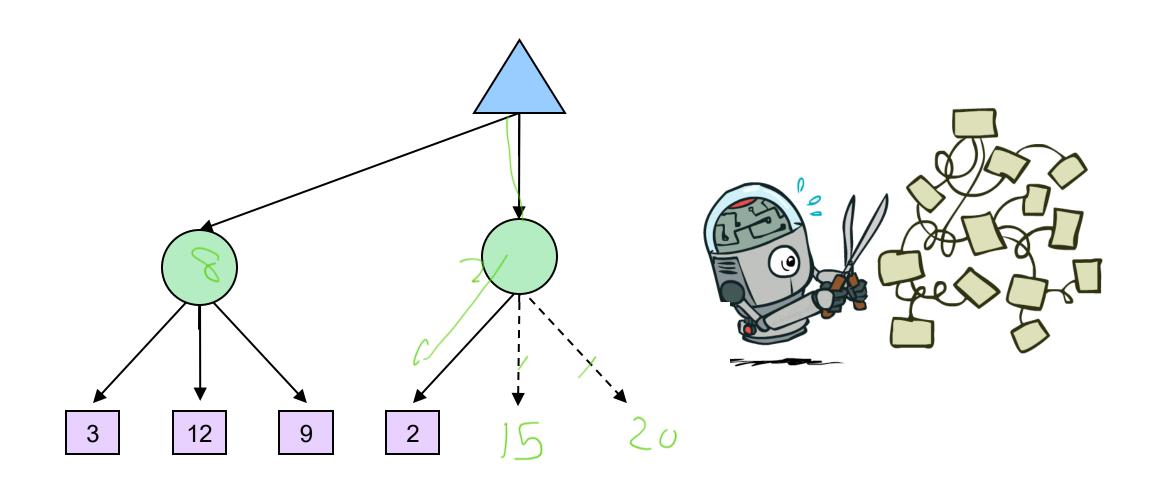


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

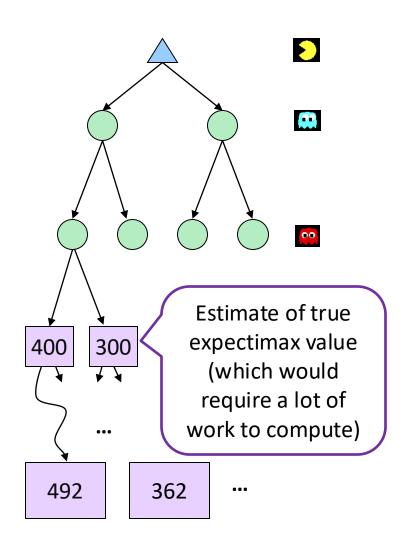
Expectimax Example



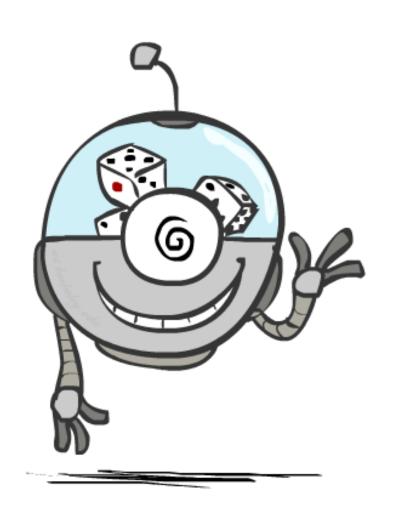
Expectimax Pruning?



Depth-Limited Expectimax



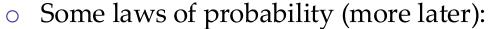
Probabilities



Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- o A probability distribution is an assignment of weights to outcomes

- o Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- o Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25



- o Probabilities are always non-negative
- o Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - o P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - o We'll talk about methods for reasoning and updating probabilities later

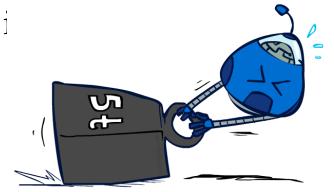
0.25

0.50

0.25

Reminder: Expectations

 The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes



• Example: How long to get to the airport?

Time:

Probability:

20 min

0.25

+

30 min

+

60 min

X

0.25

35 min

0.50

What Probabilities to Use?

 In expectimax search, we have a probabilism model of how the opponent (or environment will behave in any state

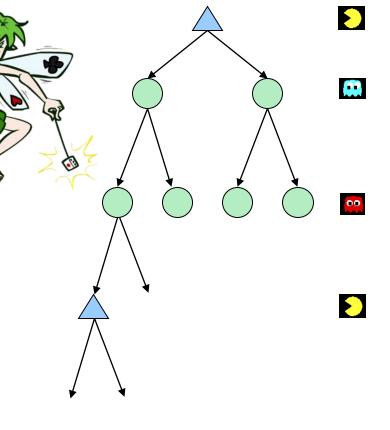
Model could be a simple uniform distribution (ron a die)

 Model could be sophisticated and require a great deal of computation

 We have a chance node for any outcome out of our control: opponent or environment

o The model might say that adversarial actions are likely!

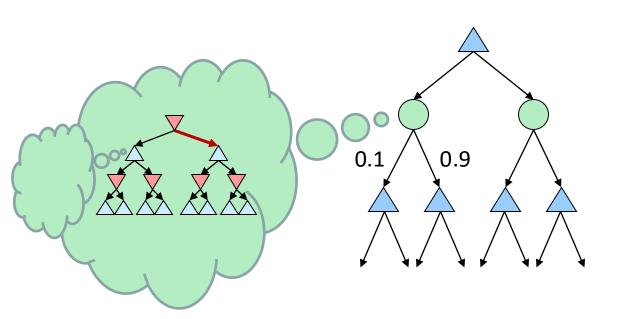
 For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

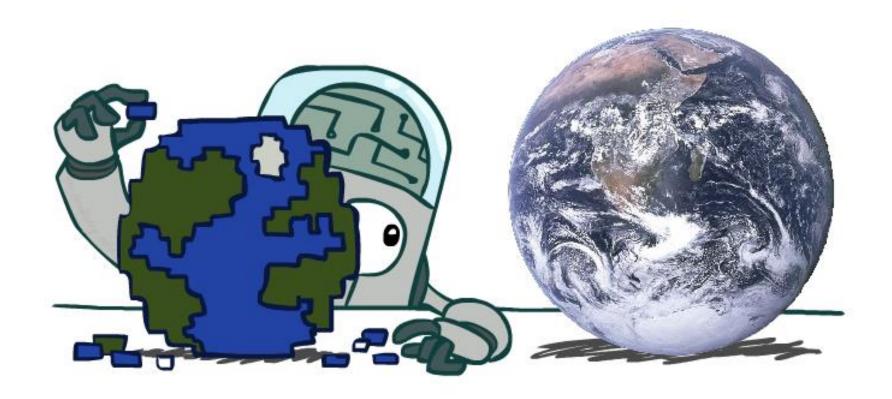
- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

Modeling Assumptions



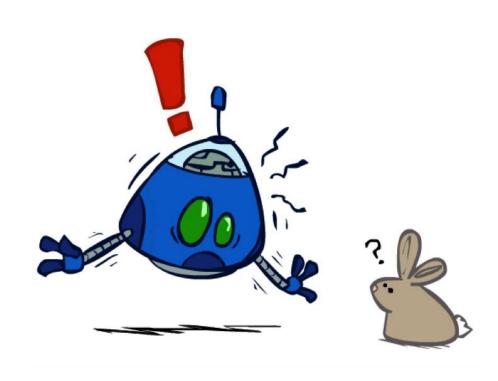
The Dangers of Optimism and Pessimism

Dangerous Optimism

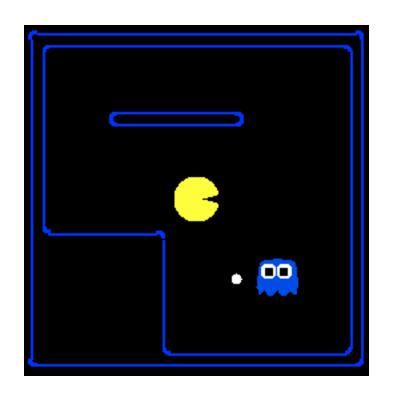
Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely



Assumptions vs. Reality



	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		

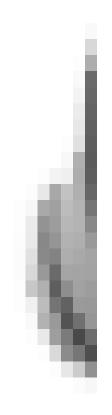
Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

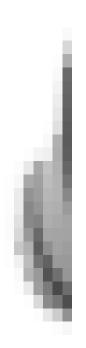
Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

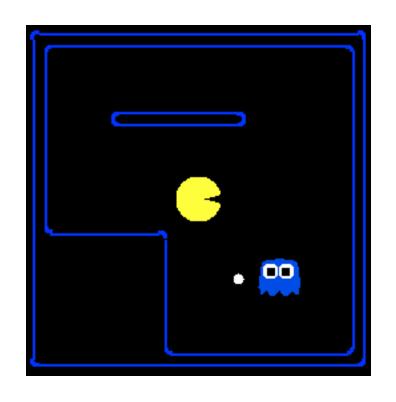
Video of Demo World Assumptions Random Ghost – Minimax Pacman



Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman



Assumptions vs. Reality



	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503

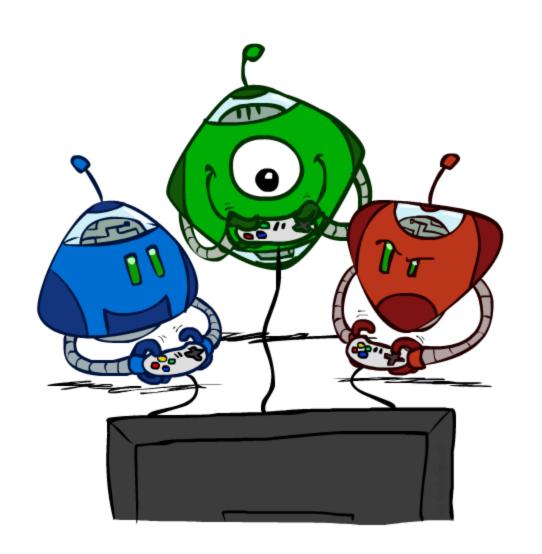
Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Why not minimax?

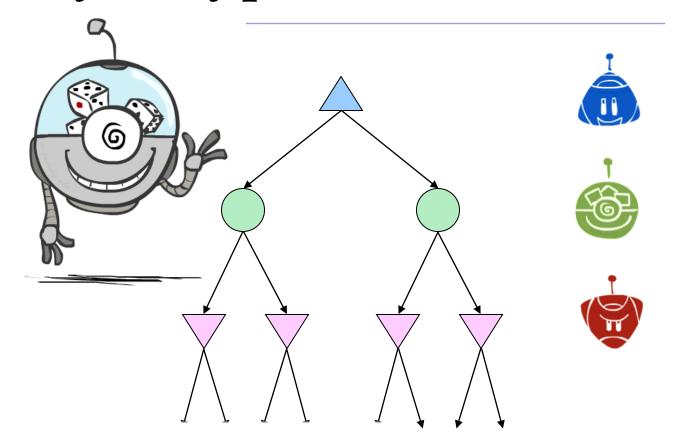
- Worst case reasoning is too conservative
- Need average case reasoning

Other Game Types



Mixed Layer Types

- E.g. Backgammon
- Expecti-minimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children



if state is a MAX node then

return the highest ExpectiMinimax-Value of Successors(state)

if state is a MIN node then

return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)

Example: Backgammon

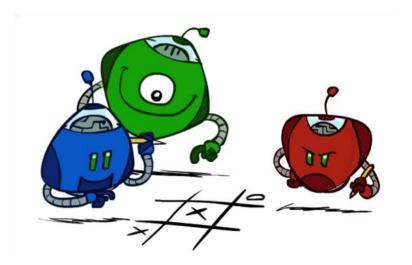
- Dice rolls increase *b*: 21 possible rolls with 2 dice
 - o Backgammon ≈ 20 legal moves
 - o Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - o But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

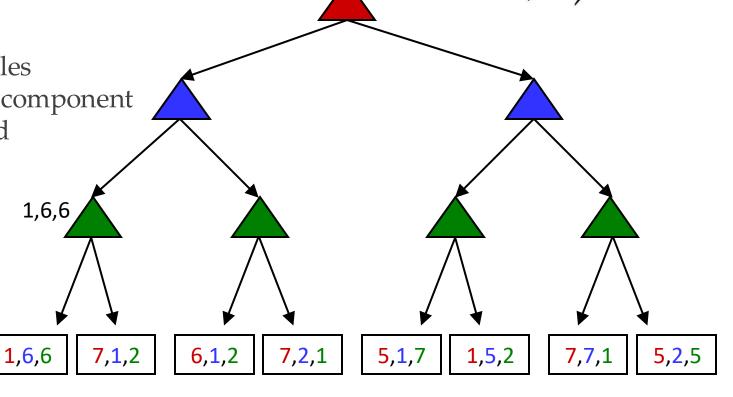
Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

- o Terminals have utility tuples
- Node values are also utility tuples
- o Each player maximizes its own component

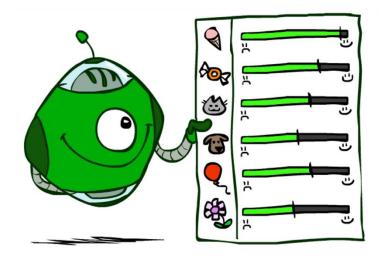
 Can give rise to cooperation and competition dynamically...





Utilities

Utilities: values that we assign to every state

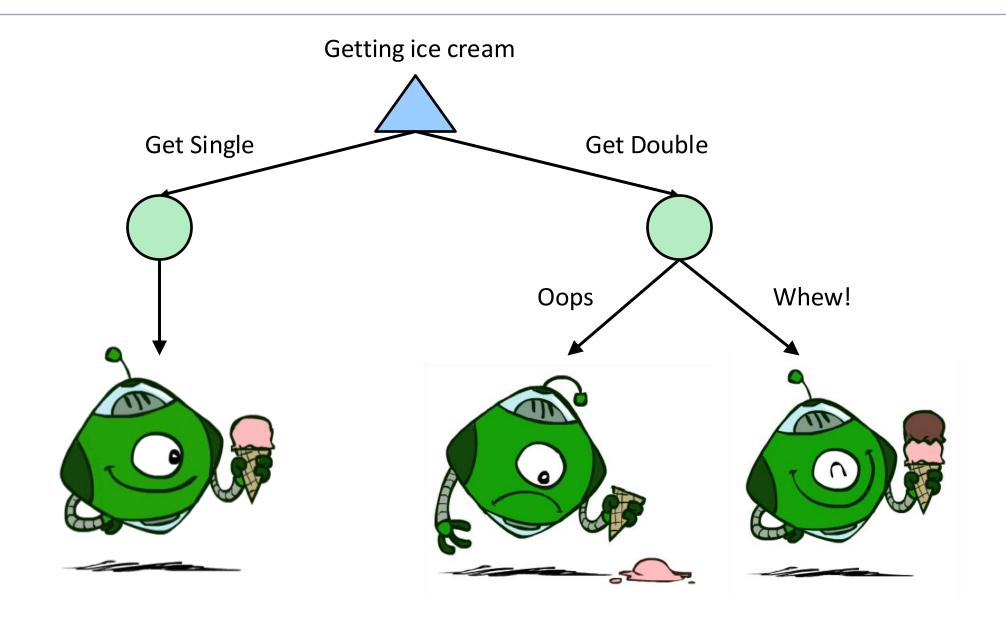


- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should choose the action that maximizes its expected utility, given its knowledge

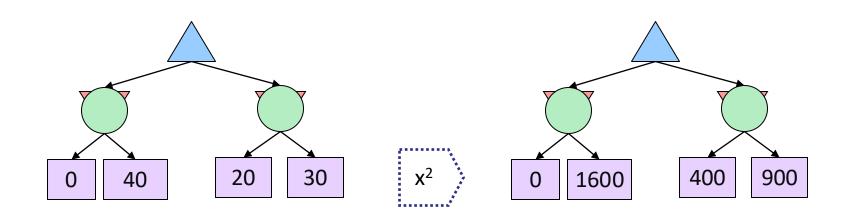
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - o In a game, may be simple (+1/-1)
 - o Utilities summarize the agent's goals
- We hard-wire utilities and let behaviors emerge

Utilities: Uncertain Outcomes



What Utilities to Use?



- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Next Topic: MDPs!