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Recap: Adversarial Search
o Resource Limitation

oAlpha Beta Pruning

oDepth-limited Search

o Evaluation function

3

o Ideal function: returns the actual minimax value of the position
o In practice: typically weighted linear sum of features:

o e.g.  f1(s) = (num white queens – num black queens), etc.



Video of Demo Smart Ghosts 
(Coordination) – Zoomed In



Depth Matters

o Evaluation functions are 
always imperfect

o The deeper in the tree the 
evaluation function is buried, 
the less the quality of the 
evaluation function matters

o An important example of the 
tradeoff between complexity of 
features and complexity of 
computation



Video of Demo Limited Depth (2)
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Video of Demo Limited Depth (10)



Synergies between 
Alpha-Beta and Evaluation Function

o Alpha-Beta: amount of pruning depends on expansion ordering

o Evaluation function can provide guidance to expand most promising nodes 
first

o Alpha-beta:

o Value at a min-node will only keep going down

o Once value of min-node lower than better option for max along path to root, 
can prune

o Hence, IF evaluation function provides upper-bound on value at min-node, 
and upper-bound already lower than better option for max along path to root 
THEN can prune
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Where are we?

o Deterministic single agent environments

o Deterministic multi-agent environments

o Moving on -> Probabilistic environments
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Uncertain Outcomes
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Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!
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Expectimax Search

o Why wouldn’t we know what the result of an action will be?
o Explicit randomness: rolling dice
o Unpredictable opponents: the ghosts respond randomly
o Unpredictable humans: humans are not perfect
o Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under 
optimal play
o Max nodes as in minimax search
o Chance nodes are like min nodes but the outcome is uncertain
o Calculate their expected utilities
o I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying 
uncertain-result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100
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Video of Demo Min vs. Exp (Min)
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Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10
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Expectimax Example

12 9 6 03 2 154 6
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Expectimax Pruning?

12 93 2
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Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)
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Probabilities
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Reminder: Probabilities

o A random variable represents an event whose outcome is unknown
o A probability distribution is an assignment of weights to outcomes

o Example: Traffic on freeway
o Random variable: T = whether there’s traffic
o Outcomes: T in {none, light, heavy}
o Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

o Some laws of probability (more later):
o Probabilities are always non-negative
o Probabilities over all possible outcomes sum to one

o As we get more evidence, probabilities may change:
o P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
o We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25
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Reminder: Expectations

o The expected value of a function of a random variable is 
the average, weighted by the probability distribution 
over outcomes

o Example: How long to get to the airport?

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +
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What Probabilities to Use?

o In expectimax search, we have a probabilistic 
model of how the opponent (or environment) 
will behave in any state
o Model could be a simple uniform distribution (roll a 

die)
o Model could be sophisticated and require a great deal 

of computation
o We have a chance node for any outcome out of our 

control: opponent or environment
o The model might say that adversarial actions are likely!

o For now, assume each chance node magically 
comes along with probabilities that specify the 
distribution over its outcomes

Having a probabilistic belief about 
another agent’s action does not mean 
that the agent is flipping any coins!
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Quiz: Informed Probabilities

o Let’s say you know that your opponent is actually running a depth 2 minimax, 
using the result 80% of the time, and moving randomly otherwise

o Question: What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax and maximax, which 
have the nice property that it all collapses into 
one game tree
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Modeling Assumptions
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The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely
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Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax 
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax 
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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Video of Demo World Assumptions
Random Ghost – Expectimax Pacman
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Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman
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Video of Demo World Assumptions
Random Ghost – Minimax Pacman
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Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman
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Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax 
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax 
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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Why not minimax?

o Worst case reasoning is too conservative

o Need average case reasoning
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Other Game Types

33



Mixed Layer Types

o E.g. Backgammon

o Expecti-minimax
o Environment is an extra “random 

agent” player that moves after 
each min/max agent

o Each node computes the 
appropriate combination of its 
children
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Example: Backgammon

o Dice rolls increase b: 21 possible rolls with 2 dice

o Backgammon  20 legal moves

o Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

o As depth increases, probability of reaching a 
given search node shrinks

o So usefulness of search is diminished

o So limiting depth is less damaging

o But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + 
very good evaluation function + reinforcement 
learning: 
world-champion level play

o 1st AI world champion in any game!
Image: Wikipedia35



Multi-Agent Utilities

o What if the game is not zero-sum, or has multiple players?

o Generalization of minimax:
o Terminals have utility tuples
o Node values are also utility tuples
o Each player maximizes its own component
o Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6
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Utilities

o Utilities: values that we assign to every state

o Why should we average utilities?  Why not minimax?

o Principle of maximum expected utility:
o A rational agent should choose the action that maximizes its 

expected utility, given its knowledge

37



Utilities

o Utilities are functions from 
outcomes (states of the world) to 
real numbers that describe an 
agent’s preferences

o Where do utilities come from?
o In a game, may be simple (+1/-1)
o Utilities summarize the agent’s goals

o We hard-wire utilities and let 
behaviors emerge
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Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double

Oops Whew!
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What Utilities to Use?

o For worst-case minimax reasoning, terminal function scale doesn’t matter

o We just want better states to have higher evaluations (get the ordering 
right)

o We call this insensitivity to monotonic transformations

o For average-case expectimax reasoning, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

40



Next Topic: MDPs!
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