CSE 573 .
Artificial Intelligence

Hanna Hajishirzi
Machine Learning, Perceptrons

Agent Testing
Today!

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Machine Learning

= Up until now: how use a model to make optimal decisions

= Machine learning: how to acquire a model from data /
experience

» Learning parameters (e.g. probabilities)
= Learning structure (e.g. graphs)
= Learning hidden concepts (e.g. clustering)

= First: model-based classification

Classification

Example: Spam Filter

Input: an email
Output: spam/ham

Setup:

" Get a large collection of example emails, each
labeled “spam” or “ham”

= Note: someone has to hand label all this data!

= Want to learn to predict labels of new, future
emails

Features: The attributes used to make the
ham / spam decision

Words: FREE!

Text Patterns: $dd, CAPS

Non-text: SenderInContacts, WidelyBroadcast

X

X

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE

SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.

Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:
- é}et a large collection of example images, each labeled with a
igit
= Note: someone has to hand label all this data!
= Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
= Pixels: (6,8)=ON
= Shape Patterns: NumComponents, AspectRatio, NumLoops

2?

Other Classification Tasks

= (lassification: given inputs x, predict labels (classes) y '1

i

= Examples: | Uentify the Object:

= Spam detection A) Dog
input: document; classes: spam / ham ®8) Car
= OCR C) Box

input: images; classes: characters D) Alligator

* Medical diagnosis >/, | -
input: symptoms; classes: diseases [

= Automatic essay grading
input: document; classes: grades

= Fraud detection
input: account activity; classes: fraud / no fraud

= Customer service email routing
... many more

| e

= (lassification is an important commercial technology!

Linear Classifiers

Data:

= Split into training, held-

Collection of emails,
labeled spam or ham

Note: someone has to
hand label all this data!

out, test sets

Classifiers

= Learn on the training set
* (Tune it on a held-out set)

Test it on new emails

A Spam Filter

X

X

\

Dear Sir.

First, | must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

~
free
YOUR NAME
MISSPELLED
FROM FRIEND

~

PIXEL-7,12
PIXEL-7,13

NUM_LOOPS

~

SPAM
or

“2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

xonal arborization

O
\ Axon from another cell

Cell body or Soma

Linear Classifiers

= Inputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

= [f the activation is: i
= Positive, output +1 o2 Y =>07? —
= Negative, output -1 7,

Weights

= Binary case: compare features to a weight vector
= Learning: figure out the weight vector from examples

~

~N

free : 4
YOUR NAME -1 e N
MISSPELLED 1 # free 2
FROM FRIEND :-3 YOUR NAME : 0
— MISSPELLED : 2
N\ J f(aj]_) FROM FRIEND : O
- J
e
free 0
f ('CE 2) YOUR NAME 1
Iy MISSPELLED 1
Dot product w - f positive rom PREND . 1
means the positive class :
-

Decision Rules

Binary Decision Rule

= In the space of feature vectors

= Examples are points

= Any weight vector is a hyperplane

* One side corresponds to Y=+1
= Other corresponds to Y=-1

w

BIAS : =3
free : 4
money : 2 0

free

Binary Decision Rule

= In the space of feature vectors

= Examples are points
= Any weight vector is a hyperplane

* One side corresponds to Y=+1
= Other corresponds to Y=-1

w

free : 4
money : 2
0

free

Binary Decision Rule

= In the space of feature vectors

= Examples are points

= Any weight vector is a hyperplane

* One side corresponds to Y=+1
= Other corresponds to Y=-1

>
o 9
g
w +1 = SPAM
BIAS : -3 1
free : 4
money : 2 0
-1 = HAM 0 1 free

How do we learn weight?

Weight Updates

Learning: Binary Perceptron

= Start with weights =0 : <
= For each training instance: \@» ~
-— @ —
= (Classify with current weights = ¥ - _—
+ + 4+ — - ==

= If correct (i.e., y=y*), no change!

= If wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights =0
= For each training instance: w
= Classify with current weights

| y o f
1L i we f(x) >0
y{—1 it w- f(z) <0 /

= If correct (i.e., y=y*), no change!

= If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y" -f

Examples: Perceptron

= Separable Case

&
+
+

]
+
O

~
+
O
O

118 O
O O

=t
T

1 1 1 1 1 1 1
- 0 ®» 1 ® 2 3 3 & 4 & 5 B

Multiclass Decision Rule

= [f we have multiple classes:

= A weight vector for each class:
Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = arg max wy - f(x)
y

/—' -
. O °J3
+ + -T= + + O o O O
o
$ +++++ + o O
w1y - f biggest
w1
w
wo 3
w3 - f
b%zge];t biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

wy = wy — f(x)

wye = wy + f(2)

Example: Multiclass Perceptron

“‘win the vote” [11011]

“win the election” [11001]

“win the game” [11101]

WSPORTS WpOLITICS WTECH
1 2 -2 O 3 3

BIAS 1 0 1 BIAS 0 1 0 BIAS 0

win 0 -1 0 win 0 1 0 win 0

game : O 0 1 game : O 0 -1 game 0

vote 0 -1 vote 0 1 1 vote 0

the 0 0 the 0 1 0 the 0

Training and Testing

Fractice
Exam

Underfitting and Overtitting

= Too many features

Spam if contains “FREE!”
Spam if contains $dd, CAPS

Spam if contains “Sir”
Spam if contains address
Spam if contains “OT”

Overfitting

X

X

Dear Sir.

First, | must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner,
but when | plugged it in, hit the power
nothing happened.

P(features, C = 2)
P(C=2)=0.1
P(on|C =2)=0.8
P(on|C =2) =0.1
P(off|C =2) =0.1

P(on|C =2) = 0.01

Example: Overtitting

2 wins!!

P(features, C = 3)

P(C=3)=0.1

P(on|C=3)=0.8
P(on|C =3)=0.9
P(off|C =3) =0.7

P(on|C =3) =0.0

Overfitting

30

25

20

15

10

-10

-15

Degree 15 polynomial

Overfitting

10

12

14

16

18

20

Unseen Events

Generalization and Overtitting

= Relative frequency parameters will overfit the training data!

= Just because we never saw a non-spam email with an address during training doesn’t mean we won't
see it at test time

Unlikely that every occurrence of “minute” is 100% spam

Unlikely that every occurrence of “seriously” is 100% ham

What about all the words that don’t occur in the training set at all?
In general, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only feature
= Would get the training data perfect (if deterministic labeling)
= Wouldn't generalize at all
= Just making the bag-of-words assumption gives us some generalization, but isn’t enough

= To generalize better: we need to smooth or regularize the estimates

Yy

Regularization

Limit the number of features

Limit the norm of the vector
W

= If w; and w, are equally
good, and |w; |>|w, |, then
w, is likely to better
generalize

~

free :4
YOUR_NAME :-1
MISSPELLED :1
FROM_FRIEND :-3

~

= arg max,

wy - fz)— | Wy |

-
free :8
YOUR_NAME :-2
MISSPELLED : 2
FROM_FRIEND :-6

f

(1)

f(x2)

~

free
YOUR NAME
MISSPELLED
FROM FRIEND :

~
free
YOUR NAME
MISSPELLED

~

FROM FRIEND :

O N O N

: 0
1
1
1

N

Important Concepts

= Data: labeled instances, e.g. emails marked spam/ham
* Training set
= Held out set
= Test set

= Features: attribute-value pairs which characterize each x ITraining

: : Data
= Experimentation cycle

= Learn parameters (e.g. model probabilities) on training set
= (Tune hyperparameters on held-out set)

= Compute accuracy on test set

= Very important: never “peek” at the test set! Practice —(

» Evaluation Held-Out
= Accuracy: fraction of instances predicted correctly Data

= Opverfitting and generalization ' RIS
= Want a classifier which does well on test data

= Qverfitting: fitting the training data very closely, but not Test
generalizing well Data

= Underfitting: fits the training set poorly

Tuning

TWEAK- OG- MATIC 9000

Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns

Parameters: the probabilities P(X 1Y), P(Y)

Hyperparameters: e.g. the amount / type of
smoothing to do, k, a

= What should we learn where?

Learn parameters from training data
Tune hyperparameters on different data
= Why?
For each value of the hyperparameters, train
and test on the held-out data

Choose the best value and do a final test on
the test data

accuracy

training

held-out
test

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

= For real research, usually use previous work as a (strong) baseline

Improving the Perceptron

Problems with the Perceptron

Noise: if the data isn’t separable,

weights might thrash

- Averaginlg weight vectors over
time can help (averaged
perceptron)

Mediocre generalization: finds a
“barely” separating solution

training

test
held-out

iterations

Overtraining: test / held-out
accuracy usually rises, then falls

» Overtraining is a kind of overfitting

accuracy

Non-5Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

T 0.9]0.1
0.7] 0.3
0.5] 0.5

0.3]0.7

How to get probabilistic decisions?

Perceptron scoring:z = w - f(x)
It z2=w-f(x) verypositive 2 want probability going to 1

It 2=w-fx) verynegative 2> want probability going to 0

Sigmoid function ‘1 S I
$@)= 1= ﬁ
| J
P(z) =

1l +e*

Best w?

» Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

| . 1
L (1) _ (7). _
with: P(y +1|z'";w) 1+ e—w f(z®)

1

Py = 1|z w) =1 | & o—w @)

= Logistic Regression

Separable Case: Deterministic Decision — Many Options

5' 5_
45+
45+ 45F
4tk
i 4 + +
3ot
3.5" 35_
3k
3r 3 +
29t
4.5 25|
2L
2L
P
15} O O
1.9 F 15k
1tk
1tk
1
asl O O
0.5t 0sl
0 L
0

Separable Case: Probabilistic Decision — Clear Preference

Confidences from a Classifier

= The confidence of a probabilistic classifier:
= Posterior over the top label

accuracy

confidence(x) = max P(y|x)

= Represents how sure the classifier is of the P(y|z)
classification —

= Any probabilistic model will have
confidences

= No guarantee confidence is correct

accuracy

= (alibration P(y|z)

= Weak calibration: higher confidences mean
higher accuracy —

= Strong calibration: confidence predicts
accuracy rate

» What’'s the value of calibration?

accuracy

P(y|x)

Multiclass Logistic Regression

w1y - f biggest

= Recall Perceptron: w1

= A weight vector for each class: Wy

" Score (activation) of a class y: Wy, - f (aj) w3

w2
» Prediction highest score wins y = arg max wy - f(g;) w3 - f
J w2 - f biggest
biggest
= How to make the scores into probabilities?
621 €Z2 €Z3

Z1,R22,%3 —7 s 9 9

e~l + e*2 - e*3 el - e*2 - e*3 e*l +e*2 + e~

\) \)
I |

original activations softmax activations

Best w?

» Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

(i) () ey f @)
with: P(y""|z\";w) = ——
>, evr @)

= Multi-Class Logistic Regression

Best w?

= Optimization
» i.e., how do we solve:

max [l(w) = max ZlogP(y(i)\w(i);w)

w

Hill Climbing

= Simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
= [f no neighbors better than current, quit

I

= What's particularly tricky when hill-climbing for
multiclass logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

* Could evaluate g(wy + h) and g(wy — h)

* Then step in best direction

= Or, evaluate derivative:

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate

= E.g., consider:

= Updates: g(wr, ws)
= Updates in vector notation:
w1 — w1 + a % 8g(w wo)
1 1 Own 1, W2 w — w+ a*x Vy,g(w)

0
Wo — Wo + Qv * J (w1, ws) [afifl (w)

Owo with: Vg(w) =] = gradient

Gradient Ascent

= Jdea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

" Init

= for 1iter =1, 2, ..

w — w~+ a*x Vg(w)

" «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood

Objective
max [[(w) = max Zlog P(yDz®: w)

w

\ J

g(w)

" init W

= for 1iter =1, 2, ..

W — W+ Q * ZVlogP(y(i)]az(i);w)

Stochastic Gradient Ascent on the Log Likelihood
Objective
max [[(w) = max Zlog P(yDz®: w)

w

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" Inlit w
= for 1ter =1, 2,

" pick random J

w < w + o« Viog P(yY)]z\9); w)

Mini-Batch Gradient Ascent on the Log Likelihood
Objective
max [[(w) = max Zlog P(yDz®: w)

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" Init w
= for 1ter =1, 2,
" pick random subset of trailning examples J

W — w + ok ZVlogP(y(j)]a:(j);w)
jedJ

How about computing all the derivatives?

= We'll talk about that in neural networks, which are a
generalization of logistic regression

