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Machine Learning

§ Up until now: how use a model to make optimal decisions

§ Machine learning: how to acquire a model from data / 
experience
§ Learning parameters (e.g. probabilities)
§ Learning structure (e.g. graphs)
§ Learning hidden concepts (e.g. clustering)

§ First: model-based classification



Classification



Example: Spam Filter

§ Input: an email
§ Output: spam/ham

§ Setup:
§ Get a large collection of example emails, each 

labeled “spam” or “ham”
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future 

emails

§ Features: The attributes used to make the 
ham / spam decision
§ Words: FREE!
§ Text Patterns: $dd, CAPS
§ Non-text: SenderInContacts, WidelyBroadcast
§ …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Example: Digit Recognition

§ Input: images / pixel grids
§ Output: a digit 0-9

§ Setup:
§ Get a large collection of example images, each labeled with a 

digit
§ Note: someone has to hand label all this data!
§ Want to learn to predict labels of new, future digit images

§ Features: The attributes used to make the digit decision
§ Pixels: (6,8)=ON
§ Shape Patterns: NumComponents, AspectRatio, NumLoops
§ …
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Other Classification Tasks
§ Classification: given inputs x, predict labels (classes) y

§ Examples:
§ Spam detection

input: document; classes: spam / ham
§ OCR

input: images; classes: characters
§ Medical diagnosis

input: symptoms; classes: diseases
§ Automatic essay grading

input: document; classes: grades
§ Fraud detection

input: account activity; classes: fraud / no fraud
§ Customer service email routing
§ … many more

§ Classification is an important commercial technology!



Linear Classifiers



A Spam Filter

§ Data:
§ Collection of emails, 

labeled spam or ham
§ Note: someone has to 

hand label all this data!
§ Split into training, held-

out, test sets

§ Classifiers
§ Learn on the training set
§ (Tune it on a held-out set)
§ Test it on new emails

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Some (Simplified) Biology

§ Very loose inspiration: human neurons



Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?



Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m
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ey



Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

free  :  4
money :  2
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Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



How do we learn weight?



Weight Updates



Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector



Learning: Binary Perceptron
§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector 

by adding or subtracting the 
feature vector. Subtract if y* is -1.



Examples: Perceptron

§ Separable Case



Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong 

answer, raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1
1
0
1
1

0
-1
0
-1
-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3
1
0
1
-1
0

0
0
-1
1
0



Training and Testing



Underfitting and Overfitting



Overfitting

§ Too many features
§ Spam if contains “FREE!”
§ Spam if contains $dd, CAPS 
§ …
§ Spam if contains “Sir”
§ Spam if contains address
§ Spam if contains “OT”
§ …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
  FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Example: Overfitting

2 wins!!



Overfitting



0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting



Unseen Events



Generalization and Overfitting
§ Relative frequency parameters will overfit the training data!

§ Just because we never saw a non-spam email with an address during training doesn’t mean we won’t 
see it at test time

§ Unlikely that every occurrence of “minute” is 100% spam
§ Unlikely that every occurrence of “seriously” is 100% ham
§ What about all the words that don’t occur in the training set at all?
§ In general, we can’t go around giving unseen events zero probability

§ As an extreme case, imagine using the entire email as the only feature
§ Would get the training data perfect (if deterministic labeling)
§ Wouldn’t generalize at all
§ Just making the bag-of-words assumption gives us some generalization, but isn’t enough

§ To generalize better: we need to smooth or regularize the estimates



− |      |

Regularization

§ Limit the number of features
§ Limit the norm of the vector 
w
§ If w1 and w2 are equally 

good, and |w1 |>|w2 |, then 
w2 is likely to better 
generalize

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

# free      : 8
YOUR_NAME   :-2
MISSPELLED  : 2
FROM_FRIEND :-6
...

w1 

w2 



Important Concepts

§ Data: labeled instances, e.g. emails marked spam/ham
§ Training set
§ Held out set
§ Test set

§ Features: attribute-value pairs which characterize each x
§ Experimentation cycle

§ Learn parameters (e.g. model probabilities) on training set
§ (Tune hyperparameters on held-out set)
§ Compute accuracy on test set
§ Very important: never “peek” at the test set!

§ Evaluation
§ Accuracy: fraction of instances predicted correctly

§ Overfitting and generalization
§ Want a classifier which does well on test data
§ Overfitting: fitting the training data very closely, but not 

generalizing well
§ Underfitting: fits the training set poorly

Training
Data

Held-Out
Data

Test
Data



Tuning



Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(X|Y), P(Y)
§ Hyperparameters: e.g. the amount / type of 

smoothing to do, k, a

§ What should we learn where?
§ Learn parameters from training data
§ Tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train 

and test on the held-out data
§ Choose the best value and do a final test on 

the test data



Practical Tip: Baselines
§ First step: get a baseline

§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

§ For real research, usually use previous work as a (strong) baseline



Improving the Perceptron



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over 

time can help (averaged 
perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision

0.5 | 0.5
0.3 | 0.7

0.1 | 0.9

0.7 | 0.3
0.9 | 0.1



How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability going to 1
§ If            very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Confidences from a Classifier

§ The confidence of a probabilistic classifier:
§ Posterior over the top label

§ Represents how sure the classifier is of the 
classification

§ Any probabilistic model will have 
confidences

§ No guarantee confidence is correct

§ Calibration
§ Weak calibration: higher confidences mean 

higher accuracy
§ Strong calibration: confidence predicts 

accuracy rate
§ What’s the value of calibration?



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

§ How to make the scores into probabilities? 

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Best w?

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Hill Climbing

§ Simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for 
multiclass logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

§ Could evaluate   and
§ Then step in best direction

§ Or, evaluate derivative:
§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)



2-D Optimization

Source: offconvex.org



Gradient Ascent

§ Perform update in uphill direction for each coordinate

§ E.g., consider: 

§   Updates: g(w1, w2)

w2  w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1  w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

 with:

w  w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient



§ Idea: 
§ Start somewhere
§ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775



Optimization Procedure: Gradient Ascent

§ init 

§ for iter = 1, 2, …
w

§     : learning rate --- tweaking parameter that needs to be 
chosen carefully

§ How? Try multiple choices
§ Crude rule of thumb: update changes       about 0.1 – 1 %

↵

w

w  w + ↵ ⇤ rg(w)



Batch Gradient Ascent on the Log Likelihood 
Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init 

§ for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)



Stochastic Gradient Ascent on the Log Likelihood 
Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init 

§ for iter = 1, 2, …
§ pick random j

w

w  w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood 
Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init 

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one

w  w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)



§ We’ll talk about that in neural networks, which are a 
generalization of logistic regression 

How about computing all the derivatives?


