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Hidden Markov Models

Markov Models

In previous notes, we talked about Bayes’ nets and how they are a wonderful structure used for
compactly representing relationships between random variables. We’ll now cover a very intrin-
sically related structure called a Markov model, which for the purposes of this course can be
thought of as analogous to a chainlike, infinite-length Bayes’ net. The running example we’ll
be working with in this section is the day-to-day fluctuations in weather patterns. Our weather
model will be time-dependent (as are Markov models in general), meaning we’ll have a separate
random variable for the weather on each day. If we define W; as the random variable representing
the weather on day i, the Markov model for our weather example would look like this

What information should we store about the random variables involved in our Markov model?
To track how our quantity under consideration (in this case, the weather) changes over time, we
need to know both it’s initial distribution at time t = 0 and some sort of transition model that
characterizes the probability of moving from one state to another between timesteps. The initial
distribution of a Markov model is enumerated by the probability table given by P(W0) and the
transition model of transitioning from state i to i+1 is given by P(Wo,|W=5. Note that this transi-
tion model implies that the value of W;; is conditionally dependent only on the value of W;. In
other words, the weather at time t =i + 1 satisfies the Markov property or memoryless property,
and is independent of the weather at all other timesteps besides t = i. Using our Markov model
for weather, if we wanted to reconstruct the joint between Wy, Wi, and W» using the chain rule,
we would want:

P(Wo, Wi, W3) = P(Wo) P(W1|Wo)P(W2|W1, Wo)

However, with our assumption that the Markov property holds true and W is independent of
Wy |W1, the joint simplifies to:

P(Wy, W1, Wa) = P(Wo)P(W1|Wy)P(Wa|Wh)

And we have everything we need to calculate this from the Markov model. More generally,
Markov models make the following independence assumption at each timestep: W;,, is inde-
pendent of Wy, ..., W;_1|W;. This allows us to reconstruct the joint distribution for the first n+1
variables via the chain rule as follows:

n—1
P(Wo, Wi, ..., Wy) = P(Wo) P(W1|Wo) P(Wa|Wh)...P(Wa|Wy1) = P(Wo) [[ P(Wisa|W5)

=1

A final assumption that’s typically made in Markov models is that the transition model is station-
ary. In other words, for all values of i (all timesteps), P(W;1|W;) is identical. This allows us to
represent a Markov model with only two tables: one for P(Wj) and one for P(W;;1|W;).
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The Mini Forward Algorithm

We now know how to compute the joint distribution across timesteps of a Markov model. How-
ever, this doesn’t explicitly help us answer the question of the distribution of the weather on some
given day t. Naturally, we can compute the joint then marginalize (sum out) over all other vari-
ables, but this is typically extremely inefficient, since if we have j variables each of which can take
on d values, the size of the joint distribution is O(d”). Instead, we’ll present a more efficient tech-
nique called the mini-forward algorithm. Here’s how it works. By properties of marginalization,
we know that
P(Wi+1) = P(W;,Wis1)
Wi

By the chain rule we can re-express this as follows:
P(W; +1) = 3 P(Wipa|(Wy) P(W))

This equation should make some intuitive sense — to compute the distribution of the weather at
timestep i+1, we look at the probability distribution at timestep i given by P(W;) and "advance"
this model a timestep with our transition model P(W;4|(W;). With this equation, we can itera-
tively compute the distribution of the weather at any timestep of our choice by starting with our
initial distribution P(Wj) and using it to compute P(W;) , then in turn using P(W;) to compute
P(W3) and so on. Let’s walk through an example, using the following initial distribution and
transition model:

Wip1 | Wi | P(Wipq[W)
Wo | P(Wp) sun | sun 0.6
sun 0.8 rain | sun 0.4
rain 0.2 sun | rain 0.1

rain | rain 0.9

Using the mini-forward algorithm we can compute P(W) as follows:
P(Wy = sun) = ZP(Wl = sun|wg)P(wp)
wo
P(W;y = sun) = P(Wq = sun|Wy = sun)P(Wy = sun) + P(W; = sun|Wy = rain) P(Wy = rain)
=0.60.8 +0.10.2 = 0.5

P(W;y = rain) = P(W1 = rain|wg) P(w)
P(Wy = rain) = P(Wq = rain|Wy = sun) P(Wy = sun) + P(W1 = rain|Wy = rain)P(Wy = rain)
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=0.40.8+0.90.2 = 0.5

Notably, the probability that it will be sunny has decreased from 80% at time t = 0 to only 50%
at time t = 1. This is a direct result of our transition model, which favors transitioning to rainy
days over sunny days. This gives rise to a natural follow-up question: does the probability of
being in a state at a given timestep ever converge? We’ll address the answer to this problem in the
following section.

Stationary Distribution

To solve the problem stated above, we must compute the stationary distribution of the weather.
As the name suggests, the stationary distribution is one that remains the same after the passage of
time, i.e.

P(Wiy1) = P(Wy)

We can compute these converged probabilities of being in a given state by combining the above
equivalence with the same equation used by the mini-forward algorithm:

P(Wip1) = P(W) =Y P(Wiga [wi) P(wr)
wy
For our weather example, this gives us the following two equations:
P(W; = sun) = P(Wy1 = sun|Wy = sun) P(W; = sun)+P(Wi1 = sun|Wy = rain) P(W; = rain)
= 0.6P(W; = sun) + 0.1P(W;y = rain)
P(W; = rain) = P(Wi1 = rain|W, = sun)P(W; = sun)+P (W1 = rain|Wy = rain) P(Wy = rain)
= 0.4P(Wy = sun) + 0.9P(W; = rain)

We now have exactly what we need to solve for the stationary distribution, a system of 2 equa-
tions in 2 unknowns! We can get a third equation by using the fact that P(1}) is a probability
distribution and so must sum to 1:

P(W; = sun) = 0.6P(W; = sun) + 0.1P(W; = rain)
P(W; = rain) = 0.4P(W; = sun) + 0.9P(W; = rain)
1 = P(Wy = sun) + P(Wy = rain)

Solving this system of equations yields P(W; = sun) = 0.2 and P(W; = rain) = 0.8. Hence the
table for our stationary distribution, which we’ll henceforth denote as P(W,), is the following;:

P(Weot1 = sun) = P(Wat1 = sun|Weo = sun)P(Ws = sun)+P(Weot1 = sun|Weo = rain) P(Ws = rain)
=06x0240.1x08=0.2

P(Weot1 =rain) = P(We+1 = rain|Wy = sun)P(Wy = sun)+P(Wyoi1 = rain|Wy = rain)P(Wy, = rain)
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=04x02+09x08=0.8
As expected, P(W + 1) = P(W4). In general, if W, had a domain of size k, the equivalence

P(Wy) = P(Wey1|we) P(w,)

wt

yields a system of k equations, which we can use to solve for the stationary distribution.

Hidden Markov Models

With Markov models, we saw how we could incorporate change over time through a chain of
random variables. For example, if we want to know the weather on day 10 with our standard
Markov model from above, we can begin with the initial distribution P(1/,) and use the mini-
forward algorithm with our transition model to compute P(1V;0). However, between time t = 0
and time t = 10, we may collect new meteorological evidence that might affect our belief of the
probability distribution over the weather at any given timestep. In simpler terms, if the weather
forecasts an 80% chance of rain on day 10, but there are clear skies on the night of day 9, that
80% probability might drop drastically. This is exactly what the Hidden Markov Model helps us
with - it allows us to observe some evidence at each timestep, which can potentially affect the
belief distribution at each of the states. The Hidden Markov Model for our weather model can be
described using a Bayes’ net structure that looks like the following:

Unlike vanilla Markov models, we now have two different types of nodes. To make this dis-
tinction, we’ll call each W, a state variable and each weather forecast F; an evidence variable.
Since W; encodes our belief of the probability distribution for the weather on day i, it should be a
natural result that the weather forecast for day i is conditionally dependent upon this belief. The

model implies similar conditional independence relationships as standard Markov models, with
an additional set of relationships for the evidence variables:

F 1L Ww,
Vi = 2,...,n; "ViJ—L{WO,---;VVi—z;Flg---,F;‘—I}WVi—l
Vi = 2,...m  ELW{W,....We1,R,....,F1}[W;

Just like Markov models, Hidden Markov Models make the assumption that the transition
model P(W; + 1|W;) is stationary. Hidden Markov Models make the additional simplifying as-
sumption that the sensor model P(F;|W;) is stationary as well. Hence any Hidden Markov Model
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can be represented compactly with just three probability tables: the initial distribution, the transi-
tion model, and the sensor model.

As a final point on notation, we’ll define the belief distribution at time i with all evidence F1,...,Fi
observed up to date:

B(W;) = P(Wil f1, ..., [3)

Similarly, we’ll define B’(W;) as the belief distribution at time i with evidence f1, ..., f;—1 observed:
B'(W;) = P(Wil f1, ..., fi-1)

Defining e; as evidence observed at timestep i, you might sometimes see the aggregated evi-
dence from timesteps 1 < i < ¢ reexpressed in the following form:

€1t = €1,...,€¢

Under this notation, P(W;|fi, ..., fi—1) can be written as P(W;|f1 : (i — 1)). This notation will
become relevant in the upcoming sections, where we’ll discuss time elapse updates that iteratively
incorporate new evidence into our weather model.



