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Uncertainty and Bayes Nets

Uncertainty

In this section we cover the background necessary to build agents who are capable of modeling
and taking actions face of uncertainty about their environment. This knowledge will allow you
to create a Pacman agent for the ghostbusters assignment that is able to track down ghost de-
spite imperfect "sensor" readings, where given any individual sensor reading Pacman knows the
probability distribution of that sensor reading given the ghosts potential distance.

In order to begin dealing with uncertainty, we first need a way to quantify and define uncertainty.
A random variable represents some aspect of the world which has uncertainty, and is typically
denoted with a single capital letter, e.g.

S = is it sunny outside?
T = what is the current temperature outside?

Every random variable has some domain which it’s values will lie inside. For instance, the domain
for S would be {true, false}, or since it is a boolean variable, another common notation would be
{+s,−s}. The domain of T would be {0,∞} (assuming T is given in Kelvin).

A probability distribution for a random variable associates probabilities with outcomes or val-
ues that variable can take on, and can be represented as a table for discrete random variables.
Unobserved random variables have distributions.

P (S)

S P
sunny 0.5
cloudy 0.5

For any random variable X , denoted as an upper case letter, a lower case value probability is
a single number, e.g. P (S = sunny) = 0.5
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A common shorthand could express the same as P (sunny) = 0.5, this is valid if all domains
are distinct. For a probability distribution table to be valid, the following must hold:

∀x P (X = x) ≥ 0∑
x

P (X = x) = 1

An event is a set of outcomes. A joint distribution for some set of random variables X,Y, Z
provides a real number probability for each possible assignment or event.

P (T,W )

T W P
hot sunny 0.4
cold sunny 0.1
hot cloudy 0.2
cold cloudy 0.3

A joint distribution must obey similar rules to a probability distribution, adapted to multiple
random variables:

∀x1, x2, ...xn P (x1, x2, ...xn) ≥ 0∑
x1,x2,...xn

P (X1 = x1, X2 = x2, ...Xn = xn) = 1

A marginal distribution is a sub-table which eliminates other variables. The process of marginal-
ization or summing out is the process of collapsing rows and adding their probabilities to produce
a marginal distribution.

P (T,W ) =

T W P
hot sunny 0.4
cold sunny 0.1
hot cloudy 0.2
cold cloudy 0.3

P (t) =
∑

w P (t, w) → P (T ) =

T P
hot 0.5
cold 0.5

P (w) =
∑

t P (t, w) → P (W ) =

W P
sunny 0.6
cloudy 0.4
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Below is the definition for the relation between conditional and joint probabilities. A conditional
probability is the probability of an event occurring given that another event has already occurred.

P (a|b) = P (a, b)

P (b)

By rearranging, we can determine that when we have the conditional distribution but want the
joint distribution, we can use the product rule.

P (y)P (x|y) = P (x, y)

We can say two variables are independent if ∀x, yP (x, y) = P (x)P (y), or ∀x, yP (x|y) = P (x).Models
are always simplifications, which means they cannot account for every variable or interaction be-
tween variables. Independence is typically a simplifying, modeling assumption, meaning the
empirical joint distributions are "close" to independent.

Unconditional independence is extremely rare. On the other hand conditional independence, a
concept indicating that the occurrence or value of one random variable is independent of another
given the knowledge of a third variable, is much more common. Two variables are conditionally
independent if:

∀x, y, zP (x, y|z) = P (x|z)P (y|z)

Independence assumptions can be useful for decreasing the space complexity of storing many
variables. For instance, the joint distribution for n boolean variables (such as fair coin flips) would
require a table with 2n rows, but by assuming independence this could be reduced to n tables with
2 rows each.
The chain rule allows the decomposition of a complex joint probability into many conditional
probabilities.

P (x1, x2, ...xn) = P (x1)P (x2|x1)P (x3|x1, x2)...

Bayes Nets

Bayesian networks, or bayes nets, are probabilistic graphical models that represent and quantify
the probabilistic relationships among a set of random variables using a directed acyclic graph and
several conditional probability tables.

Nodes in the graph represent variables and edges represent direct influence. Variables can be
observed or unobserved, and edges are directional and encode conditional independence. There
is one node per variable, and one conditional probability table (CPT) for each node. A CPT is a
collection of distributions over some variable, containing one entry for each combination of parent
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values.

Bayes nets are able to implicitly encode joint distributions as a product of local conditional distri-
butions. We can calculate the probability the network gives to any specific assignment by multi-
plying all the conditionals together:

P (x1, x2, ...xn) =
n∏

i=1

P (x1|parents(Xi))

Bayes nets assume conditional independence. This means that not every network can represent
every joint distribution, because the particular topology enforces certain conditional independen-
cies which may not hold well for certain joint distributions.

For a bayesian network to represent n variables, if m is the largest number of parent nodes of
any node in the network, the space complexity will be n ∗ 2m. For the same number of variables
to be represented by a table with no conditional independence assumptions, the space complexity
will be 2n. Since in practice n >> m, this means the space complexity of a bayesian network is far
better.

When we want to reason about a sequence of changing observations over time or space. In or-
der to simplify the process of reasoning over changing observations, we have the stationarity
assumption, which is the assumption that transition probabilities between states (in time, for ex-
ample) are always the same (don’t change over time). There is also the markov assumption, which
is the assumption that each time step only depends on the previous time step and is independent
of other past or future states.

Example of Bayes Net Representation

As an example of a Bayes Net, consider a model where we have five binary random variables
described below:

• B: Burglary occurs.

• A: Alarm goes off.

• E: Earthquake occurs.

• J: John calls.

• M: Mary calls.

Assume the alarm can go off if either a burglary or an earthquake occurs, and that Mary and John
will call if they hear the alarm. We can represent these dependencies with the graph shown below.
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In this Bayes Net, we would store probability tables P(B),P(E),P(A|B,E),P(J|A) and P(M|A).
Given all of the CPTs for a graph, we can calculate the probability of a given assignment using the
following rule:

P (x1, x2, ...xn) =

n∏
i=1

P (x1|parents(Xi))

For the alarm model above, we can actually calculate the probability of a joint probability as fol-
lows:

P(−,−,+⅁,+ג,−⋗) = P(−)P(−)P(+⅁| − ,−)P(+ג|+ ⅁)P(−⋗|+ ⅁)

We will see how this relation holds in the next section.
As a reality check, it’s important to internalize that Bayes Nets are only a type of model. Models
attempt to capture the way the world works, but because they are always a simplification they are
always wrong. However, with good modeling choices they can still be good enough approxima-
tions that they are useful for solving real problems in the real world.
In general, a good model may not account for every variable or even every interaction between
variables. But by making modeling assumptions in the structure of the graph, we can produce
incredibly efficient inference techniques that are often more practically useful than simple proce-
dures like inference by enumeration.
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Causal Chains

Figure 1 is a configuration of three nodes known as a causal chain. It expresses the following rep-
resentation of the joint distribution over X, Y, and Z:

P(↶,↷,𭟋) = P(𭟋|↷)P(↷|↶)P(↶)

It’s important to note that X and Z are not guaranteed to be independent, as shown by the follow-
ing counterexample:

P(↷|↶) =

{
1 x = y

0 else

P(𭟋|↷) =

{
1 z = y

0 else

However, we can make the statement that X is independent of Z|Y, as in Figure 2. Recall that this
conditional independence:

P (X|Z, Y ) = P (X|Y )

We can prove this statement as follows:

P (X|Z, y) = P (X,Z, y)

P (Z, y)
=

P (Z|y)P (y|X)P (X)∑
x P (X, y, Z)

=
P (Z|y)P (y|X)P (X)

P (Z|y)
∑

x P (y|x)P (x)
=

P (y|X)P (X)∑
x P (y|x)P (x)

=
P (y|X)P (X)∑
x P (y|x)P (x)

=
P (y|X)P (X)

P (y)
= P (X|y)

An analogous proof can be used to show the same thing for the case where X has multiple parents.
To summarize, in the causal chain chain configuration X is independent of Z|Y.

Summary

Models are imperfect and make simplifying assumptions about the real world. If we are care-
ful about these assumptions (like assumed independence or conditional independence) these can
have minimal impact on accuracy but bring massive computational simplification. Bayes Nets are
models that represent the probabilistic relationships among a set of random variables.

• We can describe the probabilistic profile of variables with distributions, and the relationships
between them with joint and conditional distributions.
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• Absolute v.s. conditional independence. Truly independent variables are extremely rare in
practice. Conditional independence is very powerful, and much more common.

• There are two major problems with full joint distribution tables. First, unless there is a
trivially small number of variables, the resulting table is far too large to explicitly represent.
Secondly, it is hard to learn anything about more than a few variables at a time.

• Bayesian networks implicitly encode joint distributions, and with vastly lower space require-
ments.

• Not every bayesian network can represent every joint distribution.
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