UW CSEP 573 Notes 5

1 Reinforcement Learning

We have learned to solve Markov decision processes using techniques such as value iteration
and policy iteration to compute the optimal values of states and extract optimal policies. Solving
Markov decision processes is an example of offline planning, where agents have full knowledge
of both the transition function and the reward function, all the information they need to precom-
pute optimal actions in the world encoded by the MDP without ever actually taking any actions.
Here we’ll discuss online planning, during which an agent has no prior knowledge of rewards or
transitions in the world (still represented as a MDP). In online planning, an agent must try explo-
ration, during which it performs actions and receives feedback in the form of the rewards. The
agent uses this feedback to estimate an optimal policy through a process known as reinforcement
learning.

State:s

Reward:r Actions:a

Environment

Let’s start with some basic terminology. At each time step during online planning, an agent starts
in a state s, then takes an action a and ends up in a successor state s’, attaining some reward r.
Each (s, a, s, r) tuple is known as a sample. Often, an agent continues to take action and collect
samples in succession until arriving at a terminal state. Such a collection of samples is known
as an episode. Agents typically go through many episodes during exploration in order to collect
sufficient data needed for learning.

The first type of reinforcement learning we introduce is model-based learning. Model-based
learning attempts to estimate the transition and reward functions with the samples attained dur-
ing exploration before using these estimates to solve the MDP normally with value or policy iter-
ation.

2 Model-Based Learning

There are two steps in model-based learning. Step one is to learn the empirical MDP model. An
agent generates an approximation of the transition function, 7'(s, a, s'), by keeping counts of the
number of times it arrives in each state s’ after entering each Q-state (s,a). The agent can then
generate the approximate transition function 7' by normalizing the counts it has collected - divid-
ing the count for each observed tuple (s, a, s’) by the sum over the counts for all instances where
the agent was in Q-state (s,a). Normalization of counts scales them such that they sum to one,
allowing them to be interpreted as probabilities. Discover each R(s,a,s’) when we experience

CSEP 573 Autumn’25 1

UW CSEP 573 Notes 5

(s,a,s"). Step two is to solve the learned MDP. For example, we can use value iteration as before.

Consider the following example MDP with states S = {4, B,C, D, E, z}, with z representing
the terminal state, and discount factor v = 1:

Assume we allow our agent to explore the MDP for four episodes under the policy 7ypiore delin-
eated above (a directional triangle indicates motion in the direction the triangle points, and a blue
square represents taking exit as the action of choice), and yield the following results:

Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C,east, D, -1
D, exit, x, +10 D, exit, x, +10

Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1
D, exit, x,+10 A, exit, x,-10

We now have a collective 12 samples, 3 from each episode with counts as follows:

s a s’ | count
A exit | x 1
B | east | C 2
C | east | A 1
C | east | D 3
D | exit | x 3
E | north | C 2

CSEP 573 Autumn’25 2

UW CSEP 573 Notes 5

Recalling that T'(s, a, s') = P(s'|a, s), we can estimate the transition function with these counts by
dividing the counts for each tuple (s, a, s’) by the total number of times we were in Q-state (s, a)
and the reward function directly from the rewards we reaped during exploration:

e Transition Function: 7'(s,a,s’) - T(E,north,C) = % =2=
1

— (A, exit, z) = Eherita) _ 1y :
#(Aexit) 1 ¢ Reward Function: R(s,a,s’)

T(B, east,C) = % =5=1 - R(A,exit,x) = —10

[\

A~

- T(Creast, A) = HCeatd) _ 1 _ - B(B, east,C) = -1
0.25 - R(C,east,A) = —1

- T(C,east,D) = % = % = - R(C,east,D) = —1
0.75 - R(D, exit,z) = +10
7 . _ #(D,exitx) 3 __ ~

- T(D,emt,x) = W =3 = 1 - R(E, north, C) =-1

Model-Free Learning

Onward to model-free learning! There are several model-free learning algorithms, and we’ll cover
three of them: direct evaluation, temporal difference learning, and Q-learning. Direct evaluation
and temporal difference learning fall under a class of algorithms known as passive reinforcement
learning. In passive reinforcement learning, an agent is given a policy to follow and learns the
value of states under that policy as it experiences episodes, which is exactly what is done by
policy evaluation for MDPs when 7" and R are known. Q-learning falls under a second class
of model-free learning algorithms known as active reinforcement learning, during which the
learning agent can use the feedback it receives to iteratively update its policy while learning until
eventually determining the optimal policy after sufficient exploration.

Direct Evaluation

The first passive reinforcement learning technique we’ll cover is known as direct evaluation, a
method that’s as boring and simple as the name makes it sound. All direct evaluation does is fix
some policy 7 and have the agent experience several episodes while following 7. As the agent
collects samples through these episodes it maintains counts of the total utility obtained from each
state and the number of times it visited each state. At any point, we can compute the estimated
value of any state s by dividing the total utility obtained from s by the number of times s was
visited. Let’s run direct evaluation on our example from earlier, recalling that v = 1.

CSEP 573 Autumn’25 3

UW CSEP 573 Notes 5

Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C,east, D, -1
D, exit, x, +10 D, exit, x, +10

Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1
D, exit, x,+10 A, exit, x, -10

Walking through the first episode, we can see that from state D to termination we acquired a total
reward of 10, from state C' we acquired a total reward of (—1) + 10 = 9, and from state B we
acquired a total reward of (—1) + (—1) + 10 = 8. Completing this process yields the total reward
across episodes for each state and the resulting estimated values as follows:

s | Total Reward | Times Visited | V" (s)
A —10 1 —-10
B 16 2 8

C 16 4 4
D 30 3 10
E —4 2 —2

Though direct evaluation eventually learns state values for each state, it’s often unnecessarily slow
to converge because it wastes information about transitions between states.

-10
A

+8 [+4,+10
B C D
2

-

In our example, we computed V™ (E) = —2 and V™ (B) = 8, though based on the feedback we
received both states only have C as a successor state and incur the same reward of —1 when
transitioning to C'. According to the Bellman equation, this means that both B and E should have
the same value under 7. However, of the 4 times our agent was in state C, it transitioned to D and
reaped a reward of 10 three times and transitioned to A and reaped a reward of —10 once. It was

CSEP 573 Autumn’25 4

UW CSEP 573 Notes 5

purely by chance that the single time it received the —10 reward it started in state £ rather than B,
but this severely skewed the estimated value for E. With enough episodes, the values for B and
E will converge to their true values, but cases like this cause the process to take longer than we’d
like. This issue can be mitigated by choosing to use our second passive reinforcement learning
algorithm, temporal difference learning.

Temporal Difference Learning

Temporal difference learning (TD learning) uses the idea of learning from every experience, rather
than simply keeping track of total rewards and number of times states are visited and learning at
the end as direct evaluation does. In policy evaluation, we used the system of equations generated
by our fixed policy and the Bellman equation to determine the values of states under that policy
(or used iterative updates like with value iteration).

VT(s) =Y _T(s,m(s),s)[R(s,m(s),s) + 7V (s)]

Each of these equations equates the value of one state to the weighted average over the discounted
values of that state’s successors plus the rewards reaped in transitioning to them. TD learning tries
to answer the question of how to compute this weighted average without the weights, cleverly
doing so with an exponential moving average. We begin by initializing Vs, V" (s) = 0. At each
time step, an agent takes an action 7(s) from a state s, transitions to a state s’, and receives a
reward R(s,n(s),s’). We can obtain a sample value by summing the received reward with the
discounted current value of s’ under 7:

sample = R(s,m(s),s") +yV7(s')

This sample is a new estimate for V" (s). The next step is to incorporate this sampled estimate
into our existing model for V7 (s) with the exponential moving average, which adheres to the
following update rule:

V™(s) < (1 —a)V™(s) + « - sample

Above, « is a parameter constrained by 0 < o < 1 known as the learning rate that specifies the
weight we want to assign our existing model for V" (s), 1 — «, and the weight we want to assign
our new sampled estimate, a. It’s typical to start out with learning rate of o« = 1, accordingly
assigning V" (s) to whatever the first sample happens to be, and slowly shrinking it towards 0, at
which point all subsequent samples will be zeroed out and stop affecting our model of V7 (s).

Let’s stop and analyze the update rule for a minute. Annotating the state of our model at
different points in time by defining V7 (s) and sample, as the estimated value of state s after the
k" update and the k' sample respectively, we can reexpress our update rule:

Vii(s) < (1 =)V 1(s) + o - sample,,

CSEP 573 Autumn’25 5

UW CSEP 573 Notes 5

This recursive definition for V} (s) happens to be very interesting to expand:

Vir(s) « (1—a)V ((s)+«a-sample,
Vir(s) « (1—=a)[(1—-a)V 5(s)+ - sample, ;] + o -sample,
Vi(s) « (1—a)*Vy(s)+ (1 —a) a- sample, |+ a-sample,

Vii(s) «— (1—a)*Vi(s)+a-[1-a)t. sample, + ...+ (1 — a) - sampleej_; + sample, |
Vi(s) < a-[(1-a)* ! sample, +...+ (1 —«)-sample, , + sample,]

Because 0 < (1 — «) < 1, as we raise the quantity (1 — «) to increasingly larger powers, it grows
closer and closer to 0. By the update rule expansion we derived, this means that older samples are
given exponentially less weight, exactly what we want since these older samples are computed
using older (and hence worse) versions of our model for V" (s)! This is the beauty of temporal
difference learning - with a single straightforward update rule, we are able to:

¢ learn at every time step, hence using information about state transitions as we get them since
we're using iteratively updated versions of V7 (s’) in our samples rather than waiting until
the end to perform any computation.

¢ give exponentially less weight to older, potentially less accurate samples.

¢ converge to learning true state values much faster with fewer episodes than direct evalua-
tion.

Q-Learning

Both direct evaluation and TD learning will eventually learn the true value of all states under the
policy they follow. However, they both have a major inherent issue - we want to find an optimal
policy for our agent, which requires knowledge of the Q-values of states. To compute Q-values
from the values we have, we require a transition function and reward function as dictated by the
Bellman equation.

Q*(s,a) =) T(s,a,8)[R(s,a,5") +7V*(s)]

As aresult, TD learning or direct evaluation are typically used in tandem with some model-based
learning to acquire estimates of 7' and R in order to effectively update the policy followed by
the learning agent. This became avoidable by a revolutionary new idea known as Q-learning,
which proposed learning the Q-values of states directly, bypassing the need to ever know any
values, transition functions, or reward functions. As a result, Q-learning is entirely model-free.
Q-learning uses the following update rule to perform what’s known as Q-value iteration:

Qr+1(s,a) + Z T(s,a,s)|[R(s,a,s) + Y max Qr(s',d")]

CSEP 573 Autumn’25 6

UW CSEP 573 Notes 5

Note that this update is only a slight modification over the update rule for value iteration. Indeed,
the only real difference is that the position of the max operator over actions has been changed since
we select an action before transitioning when we’re in a state, but we transition before selecting a
new action when we’re in a Q-state.

With this new update rule under our belt, Q-learning is derived essentially the same way as
TD learning, by acquiring Q-value samples:

sample = R(s,a,s") + ymaxQ(s',a’)
a/
and incorporating them into an exponential moving average.
Q(s,a) « (1 —a)Q(s,a) + a - sample

As long as we spend enough time in exploration and decrease the learning rate « at an appropriate
pace, Q-learning learns the optimal Q-values for every Q-state. This is what makes Q-learning so
revolutionary - while TD learning and direct evaluation learn the values of states under a policy
by following the policy before determining policy optimality via other techniques, Q-learning can
learn the optimal policy directly even by taking suboptimal or random actions. This is called off-
policy learning (contrary to direct evaluation and TD learning, which are examples of on-policy
learning).

Approximate Q-Learning

Q-learning is an incredible learning technique that continues to sit at the center of developments
in the field of reinforcement learning. Yet, it still has some room for improvement. As it stands,
Q-learning just stores all Q-values for states in tabular form, which is not particularly efficient
given that most applications of reinforcement learning have several thousands or even millions of
states. This means we can’t visit all states during training and can’t store all Q-values even if we
could for lack of memory.

®
.
.
-
.
.
-
.
.

- -
. .
- .
- -
. .
. .
- -
- -
® L J

Figure 1 Figure 2 Figure 3

CSEP 573 Autumn’25 7

UW CSEP 573 Notes 5

Above, if Pacman learned that Figure 1 is unfavorable after running vanilla Q-learning, it would
still have no idea that Figure 2 or even Figure 3 are unfavorable as well. Approximate Q-learning
tries to account for this by learning about a few general situations and extrapolating to many sim-
ilar situations. The key to generalizing learning experiences is the feature-based representation
of states, which represents each state as a vector known as a feature vector. For example, a feature
vector for Pacman may encode

¢ the distance to the closest ghost.

¢ the distance to the closest food pellet.
¢ the number of ghosts.

¢ is Pacman trapped? 0 or 1

With feature vectors, we can treat values of states and Q-states as linear value functions:

—

V(s) = wi- fi(s)+wa- fa(s)+ ... +wy - fuls) =0 f(s))
Q(s,a) = wi- fi(s,a) +wa- fa(s,a) + ...+ wy - frn(s,a) =4 - f(s,a)

where f(s) = [fi(s) fa(s) - fa(s)]" and f(s,a) = [fi(s,a) fa(s,a) ... fa(s,a)]” repre-
sent the

feature vectors for state s and Q-state (s, a) respectively and @ = [wl wy ... wn} represents a
weight
vector. Defining difference as

difference = [R(s,a,s’) + 7 max Q(s',ad)] — Q(s,a)

approximate Q-learning works almost identically to Q-learning, using the following update rule:
w; < w; + « - difference - f;(s, a)

Rather than storing Q-values for each and every state, with approximate Q-learning we only need
to store a single weight vector and can compute Q-values on-demand as needed. As a result, this
gives us not only a more generalized version of Q-learning, but a significantly more memory-
efficient one as well.
As a final note on Q-learning, we can reexpress the update rule for exact Q-learning using
difference as follows:
Q(s,a) < Q(s,a) + a - difference

This second notation gives us a slightly different but equally valuable interpretation of the update:
it’s computing the difference between the sampled estimated and the current model of Q(s, a), and
shifting the model in the direction of the estimate with the magnitude of the shift being propor-
tional to the magnitude of the difference.

CSEP 573 Autumn’25 8

UW CSEP 573 Notes 5

Exploration and Exploitation

We’ve now covered several different methods for an agent to learn an optimal policy, and harped
on the fact that "sufficient exploration" is necessary for this without really elaborating on what’s
really meant by "sufficient". In the upcoming two sections, we’ll discuss two methods for dis-
tributing time between exploration and exploitation: e-greedy policies and exploration functions.

€-Greedy Policies

Agents following an e-greedy policy define some probability 0 < ¢ < 1, and act randomly and
explore with probability e. Accordingly, they follow their current established policy and exploit
with probability (1 —€). This is a very simple policy to implement, yet can still be quite difficult to
handle. If a large value for ¢ is selected, then even after learning the optimal policy, the agent will
still behave mostly randomly. Similarly, selecting a small value for e means the agent will explore
infrequently, leading Q-learning (or any other selected learning algorithm) to learn the optimal
policy very slowly. To get around this, ¢ must be manually tuned and lowered over time to see
results.

Exploration Functions

This issue of manually tuning ¢ is avoided by exploration functions, which use a modified Q-
value iteration update to give some preference to visiting less-visited states. The modified update
is as follows:

Q(s,a) + (1 — a)Q(s,a) + a-[R(s,a,s') + ’ymé}xf(s/, a’)]

where f denotes an exploration function. There exists some degree of flexibility in designing an
exploration function, but a common choice is to use

f(s,a) =Q(s,a) + N(s.a)

with k being some predetermined value, and N (s, a) denoting the number of times Q-state (s, a)
has been visited. Agents in a state s always select the action that has the highest f(s, a) from each
state, and hence never have to make a probabilistic decision between exploration and exploitation.
Instead, exploration is automatically encoded by the exploration function, since the term ﬁ
can give enough of a "bonus" to some infrequently-taken action such that it is selected over actions
with higher Q-values. As time goes on and states are visited more frequently, this bonus decreases
towards 0 for each state and f(s, a) regresses towards (s, a), making exploitation more and more
exclusive.

Summary

It's very important to remember that reinforcement learning has an underlying MDP, and the
goal of reinforcement learning is to solve this MDP by deriving an optimal policy. The difference

CSEP 573 Autumn’25 9

between using reinforcement learning and using methods like value iteration and policy iteration
is the lack of knowledge of the transition function 7" and the reward function R for the underlying
MDP. As a result, agents must learn the optimal policy through online trial-by-error rather than
pure offline computation. There are many ways to do this:

* Model-based learning - Runs computations to estimate the values of the transition function
T and the reward function R and uses MDP-solving methods like value or policy iteration
with these estimates.

* Model-free learning - Avoids estimation of 7" and R, instead using other methods to directly
estimate the values or Q-values of states.

— Direct evaluation - follows a policy 7 and simply counts total rewards reaped from
each state and the total number of times each state is visited. If enough samples are
taken, this converges to the true values of states under 7, albeit being slow and wasting
information about the transitions between states.

— Temporal difference learning - follows a policy = and uses an exponential moving av-
erage with sampled values until convergence to the true values of states under 7. TD
learning and direct evaluation are examples of on-policy learning, which learn the val-
ues for a specific policy before deciding whether that policy is suboptimal and needs to
be updated.

— Q-Learning - learns the optimal policy directly through trial and error with Q-value it-
eration updates. This an example of off-policy learning, which learns an optimal policy
even when taking suboptimal actions.

- Approximate Q-Learning - does the same thing as Q-learning but uses a feature-based
representation for states to generalize learning.

¢ To quantify the performance of different reinforcement learning algorithms we use the no-
tion of regret. Regret captures the difference between the total reward accumulated if we
acted optimally in the environment from the beginning and the total reward we accumu-
lated by running the learning algorithm.

10

