Reinforcement Learning
Double Bandits
Double-Bandit MDP

- **Actions:** Blue, Red
- **States:** Win, Lose

No discount
10 time steps
Both states have the same value
Offline Planning

- **Solving MDPs is offline planning**
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

Value

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Red</td>
<td>15</td>
</tr>
<tr>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

No discount

10 time steps

![Diagram](attachment:image.png)
Let’s Play!
Online Planning

- Rules changed! Red’s win chance is different.
Let’s Play!

$0 $0 $2 $0
$0 $2 $2 $0 $0
$0 $0
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Still assume a Markov decision process (MDP):
- A set of states $s \in S$
- A set of actions (per state) A
- A model $T(s,a,s')$
- A reward function $R(s,a,s')$

Still looking for a policy $\pi(s)$

New twist: don’t know T or R
- I.e. we don’t know which states are good or what the actions do
- Must actually try actions and states out to learn
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of *rewards*
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!
Robotics Rubik Cube

- https://www.youtube.com/watch?v=x4O8pojMF0w

Solving Rubik’s Cube with a Robot Hand
Video of Demo Crawler Bot
Still assume a Markov decision process (MDP):
- A set of states $s \in S$
- A set of actions (per state) A
- A model $T(s,a,s')$
- A reward function $R(s,a,s')$

Still looking for a policy $\pi(s)$

New twist: don’t know T or R
- I.e. we don’t know which states are good or what the actions do
- Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Analogy: Expected Age

Goal: Compute expected age of students

Known P(A):

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\):

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]

\[E[A] \approx \sum_a \hat{P}(a) \cdot a \]

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

\[E[A] \approx \frac{1}{N} \sum_i a_i \]

Why does this work? Because samples appear with the right frequencies.
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$
- $T(B, \text{east}, C) = 1.00$
- $T(C, \text{east}, D) = 0.75$
- $T(C, \text{east}, A) = 0.25$
- ...

$\hat{R}(s, a, s')$
- $R(B, \text{east}, C) = -1$
- $R(C, \text{east}, D) = -1$
- $R(D, \text{exit, x}) = +10$
- ...

$T(s, a, s')$ and $R(s, a, s')$ represent the transition probabilities and rewards, respectively.
Model-Free Learning
A Motivating Example Video
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

- $U^\pi(D) = 3/3 \times 10 = 10$
- $U^\pi(A) = 1/1 \times -10 = -10$
- $U^\pi(B) = 2/2 \times (-1 + -1 + 10) = 8$
- $U^\pi(C) = 3/4 \times (-1 + 10) +
 \quad 1/4 \times (-1 + -10) = 4$
- $U^\pi(E) = 1/2 \times (-1 + -1 + 10) +
 \quad 1/2 \times (-1 + -1 + -10) = -2$

Assume: $\gamma = 1$
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

 \[
 V_0^\pi(s) = 0
 \]

 \[
 V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
 \]

 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- **Key question:** how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?
We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$

$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$

$$\text{...}$$

$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: \[sample = R(s, \pi(s), s') + \gamma V^\pi(s') \]

Update to $V(s)$: \[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample \]

Same update: \[V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s)) \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

States

Observed Transitions

$U^\pi(B) \leftarrow (1/2)U^\pi(B) + \frac{1}{2} [-2 + U^\pi(C)]$

$U^\pi(C) \leftarrow (1/2)U^\pi(C) + \frac{1}{2} [-2 + U^\pi(D)]$

$U^\pi(s) \leftarrow (1 - \alpha)U^\pi(s) + \alpha [R(s,\pi(s),s') + \gamma U^\pi(s')]$
Example: Temporal Difference Learning

Observed Transitions

- **D, exit, , +10**

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

- **B, east, C, -2**

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

- **C, east, D, -2**

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

\[
U^\pi(D) \leftarrow (1/2)U^\pi(D) + 1/2 [-2 + U^\pi(C)]
\leftarrow 9
\]

\[
U^\pi(B) \leftarrow (1/2)U^\pi(B) + 1/2 [-2 + U^\pi(C)]
\leftarrow -1/2+1.5 = 0
\]

\[
U^\pi(C) \leftarrow (1/2)U^\pi(C) + 1/2 [-2 + U^\pi(D)]
\leftarrow 1.5 + 3.5 = 5
\]

\[
U^\pi(s) \leftarrow (1 - \alpha)U^\pi(s) + \alpha [R(s,\pi(s),s') + \gamma U^\pi(s')]$

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q(s, a) \]

\[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- **Full reinforcement learning: optimal policies (like value iteration)**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is **NOT** offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:

 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:

 $$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$
Q-Learning

- Q-Learning: sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: \(Q(s, a) \)
 - Consider your new sample estimate:

 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]

 - no longer policy evaluation!

 - Incorporate the new estimate into a running average:

 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\text{[sample]} \]
Q-Learning Demo

CURRENT Q-VALUES
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning: act according to current optimal (and also explore...)

- **Full reinforcement learning: optimal policies (like value iteration)**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Exploration vs. Exploitation
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

 Regular Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')$

 Modified Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

 Note: this propagates the “bonus” back to states that lead to unknown states as well!
Q-Learn Epsilon Greedy

![Diagram showing current Q-values for a grid with values 0.00]
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Video of Demo Q-learning – Exploration Function – Crawler
Even if you learn the optimal policy, you still make mistakes along the way.

Regret is a measure of your total mistake cost: the difference between your (expected) rewards and optimal (expected) rewards.

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.
Approximate Q-Learning
Video of Demo Q-Learning Pacman – Tricky – Watch All
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state.
- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food).
Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1f_1(s, a) + w_2f_2(s, a) + \ldots + w_nf_n(s, a) \]

- **Q-learning with linear Q-functions:**

 \[
 \text{transition} = (s, a, r, s') \\
 \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\
 Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \\
 w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a)
 \]

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

- \[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
- \[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \quad r = -500 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Video of Demo Approximate Q-Learning -- Pacman
Bonus: Q-Learning and Least Squares*
Linear Approximation: Regression*

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Optimization: Least Squares*

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

\[
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

Approximate q update explained:

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

“target” \quad “prediction”
Overfitting: Why Limiting Capacity Can Help
Summary: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Conclusion

- We’ve seen how AI methods can solve problems in:
 - Search
 - Games
 - Markov Decision Problems
 - Reinforcement Learning

- Next up: Uncertainty and Learning!