CSEP 573: Artificial Intelligence

Agents and environments

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld
Agents and environments
Rationality
PEAS (Performance measure, Environment, Actuators, Sensors)
Environment types
Agent types
An agent **perceives** its environment through **sensors** and **acts** upon it through **actuators** (or **effectors**, depending on whom you ask)
Are humans agents?
Yes!
- Sensors = vision, audio, touch, smell, taste, proprioception
- Actuators = muscles, secretions, changing brain state
Are pocket calculators agents?

Yes!

- Sensors = key state sensors
- Actuators = digit display
AI is more interested in agents with large computational resources and environments that require nontrivial decision making.
The **agent function** maps from percept histories to actions:

- \(f : \mathcal{P}^* \rightarrow \mathcal{A} \)
- I.e., the agent’s actual response to any sequence of percepts
Example: Vacuum world

- Percepts: [location, status], e.g., [A, Dirty]
- Actions: Left, Right, Suck, NoOp
Vacuum cleaner agent

Agent function

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A,Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A,Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B,Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B,Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A,Clean],[B,Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[A,Clean],[B,Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>etc</td>
<td>etc</td>
</tr>
</tbody>
</table>

Agent program

```java
function Reflex-Vacuum-Agent(location, status)
    returns an action

    if status = Dirty then return Suck
    else if location = A then return Right
    else if location = B then return Left
```

What is the **right** agent function?

Can it be implemented by a small agent program?
Rationality

- A fixed *performance measure* evaluates the environment sequence
 - one point per square cleaned up?
 - Basically, but details matter: agent can dump dirt then clean, repeatedly
 - Add large penalty for dumping dirt? Add small penalty for moving?
- A *rational agent* chooses whichever action maximizes the *expected* value of the performance measure
 - given the percept sequence to date and prior knowledge of environment

Does Reflex-Vacuum-Agent implement a rational agent function?

 Yes, if movement is free, or new dirt arrives frequently
Rationality, contd.

- Are rational agents **omniscient**?
 - No – they are limited by the available percepts

- Are rational agents **clairvoyant**?
 - No – they may lack knowledge of the environment dynamics

- Do rational agents **explore and learn**?
 - Yes – in unknown environments these are essential

- Do rational agents **make mistakes**?
 - No – but their actions may be unsuccessful / suboptimal

- Are rational agents **autonomous** (i.e., transcend initial program)?
 - Yes – as they learn, their behavior depends more on their own experience
A human agent in Pacman
The task environment - PEAS

- **Performance measure**
 - -1 per step; +10 food; +500 win; -500 die; ghost
- **Environment**
 - Pacman dynamics (incl ghost behavior)
- **Actuators**
 - Left Right Up Down
- **Sensors**
 - Entire state is visible / observable (except power pellet duration)
Can we (in principle) extend this reflex agent to behave well in all standard Pacman environments?

- No – Pacman is not quite fully observable (power pellet duration)
- Otherwise, yes – we can \textit{(in principle)} make a lookup table.....
PEAS: Automated taxi

- **Performance measure**
 - Income, happy customer, vehicle costs, fines, insurance premiums

- **Environment**
 - US streets, other drivers, customers, weather, police...

- **Actuators**
 - Steering, brake, gas, display/speaker

- **Sensors**
 - Camera, radar, accelerometer, engine sensors, microphone, GPS

PEAS: Backgammon

- **Performance measure**
 - Move all checkers home first
- **Environment**
 - Game board, other player?
- **Actuators**
 - Roll dice, decide how to move pieces
- **Sensors**
 - See the full board
PEAS: Medical diagnosis system

- **Performance measure**
 - Patient health, cost, reputation
- **Environment**
 - Patients, medical staff, insurers, courts
- **Actuators**
 - Screen display, email
- **Sensors**
 - Keyboard/mouse, test results
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Pacman</th>
<th>Backgammon</th>
<th>Diagnosis</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully or partially observable</td>
<td>F*</td>
<td>F</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Single-agent or multiagent</td>
<td>M</td>
<td>M</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>Deterministic or stochastic</td>
<td>D</td>
<td>S</td>
<td>D*</td>
<td>S</td>
</tr>
<tr>
<td>Static or dynamic</td>
<td>D</td>
<td>D</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>Discrete or continuous</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Known physics?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Known perf. measure?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y*</td>
</tr>
</tbody>
</table>
Agent design

- The environment type largely determines the agent design
 - *Partially observable* => agent requires *memory* (internal state)
 - *Stochastic* => agent may have to prepare for *contingencies*
 - *Multi-agent* => agent may need to behave *randomly*
 - *Static* => agent has time to compute a rational decision
 - *Continuous time* => continuously operating *controller*
 - *Unknown physics* => need for *exploration*
 - *Unknown perf. measure* => observe/interact with *human principal*
Summary

- An **agent** interacts with an **environment** through **sensors** and **actuators**
- The **agent function** describes what the agent does in all circumstances
- Rational agents choose actions that maximize their expected utility
- PEAS descriptions define task environments; precise PEAS specifications are essential and strongly influence agent designs
- More difficult environments require more complex agent designs and more sophisticated representations