CSEP 573: Artificial Intelligence

Adversarial Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld
Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Games with chance elements
A brief history

Checkers:
- 1950: First computer player.
- 1959: Samuel’s self-taught program.
- 1994: First computer world champion: Chinook defeats Tinsley
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
- 1960s onward: gradual improvement under “standard model”
- 1997: Deep Blue defeats human champion Gary Kasparov
- 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

Go:
- 1968: Zobrist’s program plays legal Go, barely (b>300!)
- 1968-2005: various ad hoc approaches tried, novice level
- 2005-2014: Monte Carlo tree search -> strong amateur
- 2016-2017: AlphaGo defeats human world champions

Pacman
Types of Games

- Game = task environment with > 1 agent

- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - One, two, or more players?
 - Turn-taking or simultaneous?
 - Zero sum?

- Want algorithms for calculating a *contingent plan* (a.k.a. strategy or policy) which recommends a move for every possible eventuality
“Standard” Games

- Standard games are deterministic, observable, two-player, turn-taking, zero-sum

- Game formulation:
 - Initial state: s_0
 - Players: $\text{Player}(s)$ indicates whose move it is
 - Actions: $\text{Actions}(s)$ for player on move
 - Transition model: $\text{Result}(s,a)$
 - Terminal (goal) test: $\text{Terminal-Test}(s)$
 - Terminal values: $\text{Utility}(s,p)$ for player p
 - Or just $\text{Utility}(s)$ for player making the decision at root
Zero-Sum Games

- Zero-Sum Games
 - Agents have *opposite* utilities
 - Pure competition: what is better for one player is worse for the other

- General Games
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible
Adversarial Search
Utility of a state: The best achievable outcome (value) from that state

Terminal States: $U(s) = \text{known}$

Non-Terminal States:

$$U(s) = \max_{s' \in \text{successors}(s)} U(s')$$
Adversarial Game Trees
Minimax Values

MAX nodes: under Agent’s control

\[U(s) = \max_{s' \in \text{successors}(s)} U(s') \]

MIN nodes: under Opponent’s control

\[U(s) = \min_{s' \in \text{successors}(s)} U(s') \]

Terminal States:

\[U(s) = \text{known} \]
Tic-Tac-Toe Game Tree
Adversarial Search (Minimax)

- **Deterministic, zero-sum games:**
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- **Minimax search:**
 - A state-space search tree
 - Players alternate turns
 - Compute each node’s **minimax value:** the best achievable utility against a rational (optimal) adversary

```
Minimax values: computed recursively
```

```
Terminal values: part of the game
```
function minimax-value(s) returns a value
 if Terminal-Test(s) then return Utility(s)
 if Player(s) = MAX then return \(\max_a \) in Actions(s) minimax-value(Result(s,a))
 if Player(s) = MIN then return \(\min_a \) in Actions(s) minimax-value(Result(s,a))

function minimax-decision(s) returns an action
 return the action \(a \) in Actions(s) with the highest minimax-value(Result(s,a))
Video of Demo Min vs. Exp (Min)
Video of Demo Min vs. Exp (Exp)
How efficient is minimax?
- Just like (exhaustive) DFS
- Time: $O(b^m)$
- Space: $O(bm)$

Example: For chess, $b \approx 35$, $m \approx 100$
- Exact solution is completely infeasible
- Humans can’t do this either, so how do we play chess?
Game Tree Pruning
Minimax Example
\[\alpha = \text{best option so far from any MAX node on this path} \]

The order of generation matters: more pruning is possible if good moves come first.
Alpha-Beta Quiz
Alpha-Beta Quiz
Alpha-Beta Quiz 2

Diagram:
- Node a has two children: b and e.
- Node b has two children: c and d.
- Node e has two children: f and g.
- Node f has two children: 10 and 100.
- Node g has two children: 100 and 8.
- Node e has two children: h and i.
- Node h has two children: <=2 and j.
- Node i has two children: 2 and k.
- Node k has two children: 1 and 2.
- Node j has two children: 10 and 20.
- Node k has two children: 20 and 4.
Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We’re computing the MIN-VALUE at some node n
 - We’re looping over n’s children
 - n’s estimate of the childrens’ min is dropping
 - Who cares about n’s value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α, MAX will avoid it, so we can prune n’s other children (it’s already bad enough that it won’t be played)

- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root
def min-value(state, α, β):
 initialize v = +∞
 for each successor of state:
 v = min(v, max-value(successor, α, β))
 if v ≤ α
 return v
 β = min(β, v)
 return v

def max-value(state, α, β):
 initialize v = -∞
 for each successor of state:
 v = max(v, min-value(successor, α, β))
 if v ≥ β
 return v
 α = max(α, v)
 return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root
def min-value(state, α, β):
 initialize v = +∞
 for each successor of state:
 v = min(v, max-value(successor, α, β))
 if v ≤ α
 return v
 β = min(β, v)
 return v

def max-value(state, α, β):
 initialize v = -∞
 for each successor of state:
 v = max(v, min-value(successor, α, β))
 if v ≥ β
 return v
 α = max(α, v)
 return v

function minimax-decision(s) returns an action
 return the action a in Actions(s) with the highest max-value(Result(s,a), -∞, +∞)
Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
 - Iterative deepening helps with this

With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Square root!
 - Doubles solvable depth!

This is a simple example of metareasoning (reasoning about reasoning)

For chess: only 35^{50} instead of 35^{100}! Yay!
Resource Limits
Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search

- Instead, search only to a limited depth in the tree
- Replace terminal utilities with an evaluation function for non-terminal positions

Example:

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- α-β reaches about depth 8 – decent chess program

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm
Evaluation Functions
Video of Demo Thrashing (d=2)
Why Pacman Starves

A danger of replanning agents!

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!
Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- e.g. \(f_1(s) = \text{(num white queens} - \text{num black queens)}) \), etc.
Evaluation for Pacman

What features would be good for Pacman?

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
Which algorithm?

$\alpha - \beta$, depth 4, simple eval fun
Which algorithm?

$\alpha \beta$, depth 4, better eval fun
Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation
Video of Demo Limited Depth (2)
Video of Demo Limited Depth (10)
Synergies between Alpha-Beta and Evaluation Function

- **Alpha-Beta**: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first

- **Alpha-beta**:
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence, IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune