Our Status in CSE573

- We’re done with Search and planning
- We are done with learning to make decisions
- Probabilistic Reasoning and Machine Learning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - ... lots more!
Today

- Probability
- Bayes Nets
- You’ll need all this stuff for the next few weeks, so make sure you go over it now!
A random variable is some aspect of the world about which we (may) have uncertainty

- $R =$ Is it raining?
- $T =$ Is it hot or cold?
- $D =$ How long will it take to drive to work?
- $L =$ Where is the ghost?

We denote random variables with capital letters

Random variables have domains

- R in $\{\text{true, false}\}$ (often write as $\{+r, -r\}$)
- T in $\{\text{hot, cold}\}$
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0), (0,1), \ldots\}$
Probability Distributions

- Associate a probability with each outcome

Temperature:

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Weather:

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>fog</td>
<td>0.3</td>
</tr>
<tr>
<td>meteor</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Probability Distributions

- Unobserved random variables have distributions

\[
P(T)
\begin{array}{|c|c|}
\hline
T & P \\
\hline
\text{hot} & 0.5 \\
\text{cold} & 0.5 \\
\hline
\end{array}
\]

\[
P(W)
\begin{array}{|c|c|}
\hline
W & P \\
\hline
\text{sun} & 0.6 \\
\text{rain} & 0.1 \\
\text{fog} & 0.3 \\
\text{meteor} & 0.0 \\
\hline
\end{array}
\]

- A distribution is a TABLE of probabilities of values

- A probability (lower case value) is a single number

\[
P(W = \text{rain}) = 0.1
\]

- Must have: \(\forall x \ P(X = x) \geq 0 \) and \(\sum_x P(X = x) = 1 \)

Shorthand notation:

\[
P(\text{hot}) = P(T = \text{hot}),
P(\text{cold}) = P(T = \text{cold}),
P(\text{rain}) = P(W = \text{rain}),
\ldots
\]

OK if all domain entries are unique
A joint distribution over a set of random variables specifies a real number for each assignment (or outcome):

\[P(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n) \]

\[P(x_1, x_2, \ldots x_n) \]

- Must obey:
 \[P(x_1, x_2, \ldots x_n) \geq 0 \]
 \[\sum_{(x_1, x_2, \ldots x_n)} P(x_1, x_2, \ldots x_n) = 1 \]

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Events

- An event is a set E of outcomes

 $$P(E) = \sum_{(x_1 \ldots x_n) \in E} P(x_1 \ldots x_n)$$

- From a joint distribution, we can calculate the probability of any event

 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR sunny?

- Typically, the events we care about are partial assignments, like $P(T=\text{hot})$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables.
- Marginalization (summing out): Combine collapsed rows by adding.

\[
P(T, W)
\]

\[
P(t) = \sum_s P(t, s)
\]

\[
P(s) = \sum_t P(t, s)
\]

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(T)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
P(W)
\]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Quiz: Marginal Distributions

\[P(X, Y) \]

\[
\begin{array}{ccc}
X & Y & P \\
+x & +y & 0.2 \\
+x & -y & 0.3 \\
-x & +y & 0.4 \\
-x & -y & 0.1 \\
\end{array}
\]

\[P(x) = \sum_{y} P(x, y) \]

\[P(y) = \sum_{x} P(x, y) \]

\[
\begin{array}{ccc}
X & P \\
+x & \\
-x & \\
\end{array}
\]

\[
\begin{array}{ccc}
Y & P \\
+y & \\
-y & \\
\end{array}
\]
Quiz: Marginal Distributions

\[P(X,Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\[P(x) = \sum_y P(x,y) \]

\[P(y) = \sum_x P(x,y) \]

\[P(X) \]

<table>
<thead>
<tr>
<th>X</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>.5</td>
</tr>
<tr>
<td>-x</td>
<td>.5</td>
</tr>
</tbody>
</table>

\[P(Y) \]

<table>
<thead>
<tr>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+y</td>
<td>.6</td>
</tr>
<tr>
<td>-y</td>
<td>.4</td>
</tr>
</tbody>
</table>
Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

\[P(a|b) = \frac{P(a, b)}{P(b)} \]

\[
P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4
\]

\[
= P(W = s, T = c) + P(W = r, T = c) \\
= 0.2 + 0.3 = 0.5
\]
Quiz: Conditional Probabilities

\[P(X, Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \(P(+x \mid +y) \) ?
- \(P(-x \mid +y) \) ?
- \(P(-y \mid +x) \) ?

\[
\frac{P(-x, +y)}{P(+y)} = \frac{0.4}{0.6}
\]
Quiz: Conditional Probabilities

\[P(X, Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \(P(+x | +y) \) ? \(\frac{0.2}{0.6} = \frac{1}{3} \)
- \(P(-x | +y) \) ? \(\frac{0.3}{0.6} = \frac{2}{3} \)
- \(P(-y | +x) \) ? \(\frac{0.4}{0.5} = 0.8 \)
Conditioned Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

\[
P(W|T = \text{hot})
\]

\[
P(W|T = \text{cold})
\]

Joint Distribution

\[
P(T, W)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

Conditional Distributions

- **$P(W|T = \text{hot})$**
 - | W | P |
 - | sun | 0.8 |
 - | rain| 0.2 |

- **$P(W|T = \text{cold})$**
 - | W | P |
 - | sun | 0.4 |
 - | rain| 0.6 |

Joint Distribution

- **$P(T, W)$**
 - | T | W | P |
 - | hot | sun | 0.4 |
 - | hot | rain | 0.1 |
 - | cold | sun | 0.2 |
 - | cold | rain | 0.3 |
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(y)P(x|y) = P(x, y) \]

\[P(x|y) = \frac{P(x, y)}{P(y)} \]
The Product Rule

\[P(y) P(x|y) = P(x, y) \]

- Example:

\(P(W) \)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(P(D|W) \)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

\(P(D, W) \)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions:

\[P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \]

\[P(x_1, x_2, \ldots x_n) = \prod_{i} P(x_i|x_1 \ldots x_{i-1}) \]

\[P(x_1)P(x_2|x_1)P(x_3|x_1x_2) \cdots P(x_i|x_1 \ldots x_{i-1})P(x_1, x_2, x_3) \]
Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.”
 - George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
Independence
Two variables are **independent** if:

\[\forall x, y : P(x, y) = P(x)P(y) \]

- This says that their joint distribution **factors** into a product two simpler distributions
- Another form:
 \[\forall x, y : P(x|y) = P(x) \]
- We write: \[X \perp\!\!\!\!\!\!\perp Y \]

Independence is a simplifying *modeling assumption*

- *Empirical* joint distributions: at best “close” to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

\[P(T) \]

\[
\begin{array}{c|c}
T & P \\
\hline
\text{hot} & 0.5 \\
\text{cold} & 0.5 \\
\end{array}
\]

\[P_1(T, W) \]

\[
\begin{array}{c|c|c}
T & W & P \\
\hline
\text{hot} & \text{sun} & 0.4 \\
\text{hot} & \text{rain} & 0.1 \\
\text{cold} & \text{sun} & 0.2 \\
\text{cold} & \text{rain} & 0.3 \\
\end{array}
\]

\[P_2(T, W) \]

\[
\begin{array}{c|c|c}
T & W & P \\
\hline
\text{hot} & \text{sun} & 0.3 \\
\text{hot} & \text{rain} & 0.2 \\
\text{cold} & \text{sun} & 0.3 \\
\text{cold} & \text{rain} & 0.2 \\
\end{array}
\]

\[P(W) \]

\[
\begin{array}{c|c}
W & P \\
\hline
\text{sun} & 0.6 \\
\text{rain} & 0.4 \\
\end{array}
\]
Example: Independence

- N fair, independent coin flips:

\[
P(X_1) \quad P(X_2) \quad \ldots \quad P(X_n)
\]

- \(P(X_1)\) and \(P(X_2)\) are independent:
 - \(P(H) = 0.5\)
 - \(P(T) = 0.5\)

- \(P(X_n)\) is also independent:
 - \(P(H) = 0.5\)
 - \(P(T) = 0.5\)

- The probability of \(n\) independent coin flips is:

 \[
P(X_1, X_2, \ldots, X_n) = 2^n
 \]

- The total number of outcomes is:

 \[
2^n
 \]
Conditional Independence

- \(P(\text{Toothache}, \text{Cavity}, \text{Catch}) \)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - \(P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity}) \)

- The same independence holds if I don't have a cavity:
 - \(P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity}) \)

- Catch is *conditionally independent* of Toothache given Cavity:
 - \(P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \)

- Equivalent statements:
 - \(P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \)
 - \(P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \)
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare (why?)

- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

- X is conditionally independent of Y given Z if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

 or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence and the Chain Rule

- **Chain rule:**
 \[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

- **Trivial decomposition:**
 \[P(\text{Traffic, Rain, Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain, Traffic}) \]

- **With assumption of conditional independence:**
 \[P(\text{Traffic, Rain, Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- **We can represent joint distributions by multiplying these simpler local distributions.**
- **Bayes’ nets / graphical models help us express conditional independence assumptions.**
Bayes’Nets: Big Picture
Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- **Bayes’ nets**: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called **graphical models**
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Example Bayes’ Net: Car

[Diagram of a Bayesian network with nodes for battery age, alternator broken, fanbelt broken, battery dead, no charging, battery flat, no oil, no gas, fuel line blocked, starter broken, car won’t start, lights, oil light, gas gauge, dipstick.]

47
Announcements

- Classes next week
Reviews

+ lectures, slides, homework, assignments
 Instructor and TA knowledge
 remote classes

- workload
 Breaks in the middle of lectures
 lack of clarity about online vs. in-person
 lecture notes
 TA office hours or lecture breakout sessions be more organized
 remote classes
Graphical Model Notation

- **Nodes**: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs**: interactions
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)

- For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence
Example: Traffic

- **Variables:**
 - R: It rains
 - T: There is traffic

- **Model 1: independence**

- **Model 2: rain causes traffic**

- Why is an agent using model 2 better?
Example: Traffic II

- **Variables**
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes’ Net Semantics
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i))
\]

- Example:

\[
P(C | +\text{cavity}, +\text{catch}, -\text{toothache}) = P(+\text{cavity})P(+\text{catch} \mid +\text{cavity})P(+\text{cavity})
\]
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Probabilities in BNs

Why are we guaranteed that setting

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

results in a proper joint distribution?

Chain rule (valid for all distributions):

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | x_1 \ldots x_{i-1}) \]

Assume conditional independences:

\[P(x_i | x_1, \ldots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

Not every BN can represent every joint distribution

- The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Coin Flips

\[
P(h, h, t, h) = P(h)P(h)P(t)P(h)
\]
Example: Traffic

\[P(\text{+r}, -t) = P(\text{+r})P(-t|\text{+r}) = \frac{1}{4} \times \frac{1}{4} \]

\[
\begin{array}{c|c|c|c}
 & +t & -t & \text{+r} \\
\hline
+r & 3/4 & 1/4 & \\
-t & 1/2 & 1/2 & \text{-r} \\
\end{array}
\]
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|---|---|-------|
| +a| +j| 0.9 |
| +a| -j| 0.1 |
| -a| +j| 0.05 |
| -a| -j| 0.95 |

| A | M | P(M|A) |
|---|---|-------|
| +a| +m| 0.7 |
| +a| -m| 0.3 |
| -a| +m| 0.01 |
| -a| -m| 0.99 |

P(B)P(E)P(A|B,E)

| B | E | A | P(A|B,E) |
|---|---|---|---------|
| +b| +e| +a| 0.95 |
| +b| +e| -a| 0.05 |
| +b| -e| +a| 0.94 |
| +b| -e| -a| 0.06 |
| -b| +e| +a| 0.29 |
| -b| +e| -a| 0.71 |
| -b| -e| +a| 0.001 |
| -b| -e| -a| 0.999 |
Example: Traffic

- Causal direction

\[
P(R) = \begin{pmatrix}
+r & 1/4 \\
-r & 3/4 \\
\end{pmatrix}
\]

\[
P(T|R) = \begin{pmatrix}
+r & +t & 3/4 \\
+r & -t & 1/4 \\
-r & +t & 1/2 \\
-r & -t & 1/2 \\
\end{pmatrix}
\]

\[
P(T,R) = \begin{pmatrix}
+r & +t & 3/16 \\
+r & -t & 1/4 \\
-r & +t & 6/16 \\
-r & -t & 6/16 \\
\end{pmatrix}
\]
Example: Reverse Traffic

- Reverse causality?

\[
P(T)
\begin{array}{c|c}
+t & 9/16 \\
-t & 7/16 \\
\end{array}
\]

\[
P(R | T)
\begin{array}{c|c|c}
+t & +r & 1/3 \\
-r & 2/3 \\
-t & +r & 1/7 \\
-r & 6/7 \\
\end{array}
\]

\[
P(T, R)
\begin{array}{c|c|c}
+r & +t & 3/16 \\
+r & -t & 1/16 \\
-r & +t & 6/16 \\
-r & -t & 6/16 \\
\end{array}
\]
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

\[
P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i))
\]
Bayes Rule
Bayes’ Rule

- Two ways to factor a joint distribution over two variables:

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

- Dividing, we get:

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!
Example: Diagnostic probability from causal probability:

\[P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})} \]

Example:
- M: meningitis, S: stiff neck

\[P(+m) = 0.0001 \]
\[P(+s|+m) = 0.8 \]
\[P(+s|-m) = 0.01 \]

Note: posterior probability of meningitis still very small
Note: you should still get stiff necks checked out! Why?
Quiz: Bayes’ Rule

- Given:

<table>
<thead>
<tr>
<th>P(W)</th>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What is P(W | dry)?
Quiz: Bayes’ Rule

- **Given:**

 \[
P(W)\
\]

<table>
<thead>
<tr>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td>0.1</td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td>0.9</td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td>0.7</td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- **What is \(P(W \mid \text{dry}) \)?**

 \[
P(W \mid \text{dry}) = \frac{P(\text{dry} \mid \text{sun}) \cdot P(\text{sun})}{P(\text{dry})}\
 \]

 - \(P(\text{sun} \mid \text{dry}) \sim P(\text{dry} \mid \text{sun}) \cdot P(\text{sun}) = 0.9 \cdot 0.8 = 0.72 \)
 - \(P(\text{rain} \mid \text{dry}) \sim P(\text{dry} \mid \text{rain}) \cdot P(\text{rain}) = 0.3 \cdot 0.2 = 0.06 \)

 \[
P(\text{sun} \mid \text{dry}) = \frac{12}{13}
 \]

 \[
P(\text{rain} \mid \text{dry}) = \frac{1}{13}
 \]

 \[
 0.72 + 0.06 = 0.78
 \]
Uncertainty Summary

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if**
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- **X and Y are conditionally independent given Z if and only if**
 \[X \perp Y | Z \]
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]

Bayes Rule
Bayes’ Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]