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Reinforcement Learning




Double Bandits




Double-Bandit MDP

o Actions: Blue, Red " Nodiscount )
M/ 10 time steps
o States: Win, Lose 025 $0 Both ctntes
have the same
\_ value Y
$1




Offline Planning

o Solving MDPs is offline planning 4 ~N

o You determine all quantities through computation No discount
o You need to know the details of the MDP 10 time steps
o You do not actually play the game! \_ )

4 N

Value

Play Red 15

Play Blue 10

- /




Let's Play!

S2 $2 S0 $S2 $2
S2 $2 SO0 SO0 SO



Online Planning

o Rules changed! Red’s win chance is different.




Let's Play!

i(()) S0 $2 SO
$2
9 $2 SO SO



What Just Happened?

o That wasn'’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP



Reinforcement Learning

o Still assume a Markov decision process (MDP):
o Asetofstatess € S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy n(s)

Overheated

o New twist: don't know T or R
o l.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

/

Environment

&

o Basic idea:
o Receive feedback in the form of rewards
o Agent’s utility is defined by the reward function
o Must (learn to) act so as to maximize expected rewards
o All learning is based on observed samples of outcomes!



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]



Robotics Rubik Cube

o https://www.youtube.com/watch?v=x408po]MFOw

1 ] .

00



https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Video of Demo Crawler Bot




Reinforcement Learning

o Still assume a Markov decision process (MDP):
o Asetofstatess € S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy n(s)

Overheated

o New twist: don't know T or R
o l.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

»

Offline Solution Online Learning




Model-Based Learning




Model-Based Learning

o Model-Based Idea:
o Learn an approximate model based on experiences
o Solve for values as If the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate 7'(s, a, ')
o Discover eachR(s,a,s’)  when we experience (s, a, s’

(l

o Step 2: Solve the learned MDP
o For example, use value iteration, as before



Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 3

4 )
E, north, C, -1
C,east, D, -1

' +
\D, exit, X, 1oj

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 4

4 )
E, north, C, -1
C, east, A, -1

L A, exit, X, —10j

Learned Model

T(s,a,s")

\_

(

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

\

J

R(s,a,s")

(

\_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

\

J




Model-Free Learning




Direct Evaluation

o Goal: Compute values for each state under
TU

o ldea: Average together observed sample
values
o Act according to

o Every time you visit a state, write down what the
sum of discounted rewards turned out to be

o Average those samples

o This iIs called direct evaluation



Input Policy =

Assume:y=1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

\_

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

~N

J

Episode 3

\_

4 E, north, C, -1

D, -1
X, +10

C, east,
D, exit,

~N

Episode 2

J

\_

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

~N

J

Episode 4

\_

4 E, north, C, -1

A, -1
X, -10

C, east,
A, exit,

~N

J

Output Values

If B and E both goto C
under this policy, how
can their values be
different?



Problems with Direct Evaluation

o What's good about direct evaluation?
o It's easy to understand
o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?
o It wastes information about state connections
o Each state must be learned separately
o So, It takes a long time to learn

Output Values

If B and E both goto C
under this policy, how
can their values be
different?



Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy n(S)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s’)
o Goal: learn the state values

o In this case:
o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.




Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

m(s)
Vg (s) =0 ® s

Vi1 (s) ¢ ST s, m(s), RS, m(s). &) + V7 () sin(s).s

o This approach fully epr0|ted the connections between the states
o Unfortunately, we need T and R to do it!

A s

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:
Vi1 (s) <= > T(s,m(s),s)[R(s,7(5),5) + vV (s")]

S

o ldea: Take samples of outcomes s’ (by doing the action!) and
average

sample; = R(s, m(s), 8’1) + ’YV]{W(Sll)
samples = R(s,m(s),s5) + YV (s5) ’( i; \
sample, = R(s, m(s), S;@) + "YV/?(S;J > A 7

1
Vig1(8) < - Z sample;
()

e ———
UL SlAdlEe S.



Temporal Difference Learning

o Big idea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r)
. . . n(s)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running
average

Sample of V(s): sample = R(s,7(s),s") +~yV7(s")
Update to V(s): V" (s) «+ (1 —a)V"™(s) + (a)sample

Same update: V" (s) < V" (s) + a(sample — V" (s))



Exponential Moving Average

o Exponential moving average
o The running interpolation update: Zn = (1 — @) - Zn_1 +a-x,

o Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[ B, east, C, -2 ] [ C, east, D, -2 ]

oloef alo]e] (23]

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")




Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, If we want to turn values into a (new) policy, we're sunk:
m(s) = argmaxQ(s,a)
Q(s,a) =Y T(s,a,8) |R(s,a,5") + V()]

o ldea: learn Q-values, not values
o Makes action selection model-free too!




Active Reinforcement Learning




Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...



Detour: Q-Value lteration

o Value iteration: find successive (depth-limited) values
o Start with Vy(s) = 0, which we know is right
o Given V,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

o But Q-values are more useful, so compute them instead
o Start with Qy(s,a) = 0, which we know is right
o Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning

o Q-Learning: sample-based Q-value iteration
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimat«Q(s, a)
o Consider your new sample estimate:

B / /7y ho longer policy
— max -
sample R(87 a, s ) T+ a’? Q(S 4 ) evaluation!

o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Q-Learning Demo

P
s

CURRENT QO-VALUES



Video of Demo Q-Learning -- Gridworld




Video of Demo Q-Learning -- Crawler




Q-Learning:
act according to current optimal (and also explore...

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...



Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

S E 5
o Caveats:

o You have to explore enough
o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’'t matter how you select actions

me




Discussion: Model-Based vs Model-Free RL
o Model-Based vs. Model Free

o Active vs. Passive

50



Recap: Reinforcement Learning

o Still assume a Markov decision process (MDP):
o Asetofstatess € S
o A set of actions (per state) A
o A model T(s,a,s’)
o A reward function R(s,a,s’)

o Still looking for a policy n(s)

o New twist: don't know T or R
o l.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn

o Big Idea: Compute all averages over T using sample outcomes



The Story So Far: MDPs and RL

Known MDP: Offline Solution

4 | )
Goal Technique
Compute V*, Q*, * Value / policy iteration
Evaluate a fixed policy & Policy evaluation
- /
Unknown MDP: Model-Based Unknown MDP: Model-Free
4 | ) 4 | )
Goal Technique Goal Technique
Compute V*, Q*, * VI/PIl on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

o J . J




Model-Free Learning

o act according to current optimal (based on Q-Values)
o but also explore...




Q-Learning

o Q-Learning: sample-based Q-value iteration
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimat«Q(s, a)
o Consider your new sample estimate:

B / /7y ho longer policy
— max -
sample R(87 a, s ) T+ a’? Q(S 4 ) evaluation!

o Incorporate the new estimate into a running average

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

EEEEEEEEEEEEEEEEEEEE



Q-Learning:
act according to current optimal (and also explore...

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)
o You don’t know the rewards R(s,a,s)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...



Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning

S E 5
o Caveats:

o You have to explore enough
o You have to eventually make the learning rate
small enough
o ... but not decrease it too quickly
o Basically, in the limit, it doesn’'t matter how you select actions

me




Exploration vs. Exploitation

b7

RAN
gﬁ-“““&l

L £T0
7 h,

-o’




How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probabillity €, act randomly
o With (large) probability 1-¢, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower ¢ over time
o Another solution: exploration functions




Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u+k/n

Regular Q-Update:  Q(s,a) <a R(s,a,s") +ymaxQ(s’,a)
Modified Q-Update: Q(s,a) <+ R(s,a,s") +~ max f(Q(s',d"), N(s',a"))

o Note: this propagates the “bonus” back to states that lead to unknown states

as well! [Demo: exploration — Q-learning — crawler — exploration function (L11D4)]



Q-Learn Epsilon Greedy

5700 v
PN IIIIIII
0.00 A

s

e

URRE




Video of Demo Q-learning — Epsilon-Greedy — Crawler




Video of Demo Q-learning — Exploration Function —
Crawler




Regret

Even if you learn the optimal policy
you still make mistakes along the
way!

Regret is a measure of your total
mistake cost: the difference
between your (expected) rewards
and optimal (expected) rewards
Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret




Approximate Q-Learning




Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training
o Too many states to hold the g-tables in memory

o Instead, we want to generalize:

o Learn about some small number of training states
from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]



Video of Demo Q-Learning Pacman —
Tiny — Watch All




Video of Demo Q-Learning Pacman —
Tiny — Silent Train




Video of Demo Q-Learning Pacman —
Tricky — Watch All




Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:




Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers
(often 0/1) that capture important properties of the
State
o Example features:
o Distance to closest ghost
Distance to closest dot
Number of ghosts
1 / (dist to dot)?
Is Pacman in a tunnel? (0/1)
O viven. etc.
o Is it the exact state on this slide?

o Can also describe a g-state (s, a) with features (e.qg.
action moves closer to food)

O
O
O
O




Linear Value Functions

o Using a feature representation, we can write a g function (or value function)
for any state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twaf2(s,a)+. .. fwnfn(s,a)
o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!



Approximate Q-Learning

QGs,0) = wifi(s @ Hwafals, )+ Aunfals,a)

o Q-learning with linear Q-functions:

transition = (s,a,r,s’)
— Q(s,a)
Q(s,a) «— Q(s,a) + «[difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; «— w; + « [difference] f;(s,a)  Approximate Q’s

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

o Formal justification: online least squares



Example: Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)

~ -
fpor(s, NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s,NORTH) = 1.0
/ \_
Q(s,NORTH) = +1 0 ) =0

r+~vymaxQ(s’,a') = —-500+0
a/
difference = —501 wpor ¢ 4.0 + a[-501]0.5
jv wasr < —1.0 + a[-501] 1.0

Q(S,CL) — 3'OfDOT(Saa’) — 3°OfG’ST(Saa)




Video of Demo Approximate

Q-Learning -- Pacman




Q-Learning and Least Squares




401

Linear Approximation: Regression

_—em mm Em Em Em = g == =

20

f1(x)

Prediction:

Yy = wo + wi f1(x)

Prediction:

y; = wo + wiy f1(x) + wafo(x)



Optimization: Least Squares

2
total error = Z (y; — ;Ji)z =3 (yi — Zwkfk(wi))
i k

1

. Error or “residual’
Observation Y |

Prediction :{/\ |




Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y - Zwkf’f(x))
k
0 e(;ror(’lU) — _ (y _ Zwkfk(aj)) fm(x)
Wm k

Wm <= Wm + O (y — Zwkfk(w)) fm(x)
k
Approximate q update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”



Overfitting: Why Limiting Capacity Can Help




New In Model-Free RL
Playing Atari Games

82



Policy Search




Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

o E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)
o Action selection priority: get ordering of Q-values right (prediction)
o We’'ll see this distinction between modeling and prediction again later in the course

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights



Policy Search

o Simplest policy search:
o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy Is better than
before

o Problems:
o How do we tell the policy got better?
o Need to run many sample episodes!
o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change
multiple parameters...






Summary: MDPs and RL

Known MDP: Offline Solution

4 | )
Goal Technique
Compute V*, Q*, * Value / policy iteration
Evaluate a fixed policy & Policy evaluation
- /
Unknown MDP: Model-Based Unknown MDP: Model-Free
e *use features \ 4 *use features N\
Goal to generalize Technique Goal to generalize  Technique
Compute V*, Q*, * VI/PIl on approx. MDP Compute V*, Q*, * Q-learning

Evaluate a fixed policy &

o

PE on approx. MDP

J

o

Evaluate a fixed policy &

Value Learning

J




Conclusion

o We've seen how Al methods can solve
problems in:
o Search
o Games
o Markov Decision Problems
o Reinforcement Learning

o Next up: Uncertainty and Learning!




