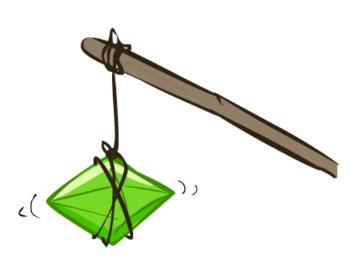
CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi Reinforcement Learning

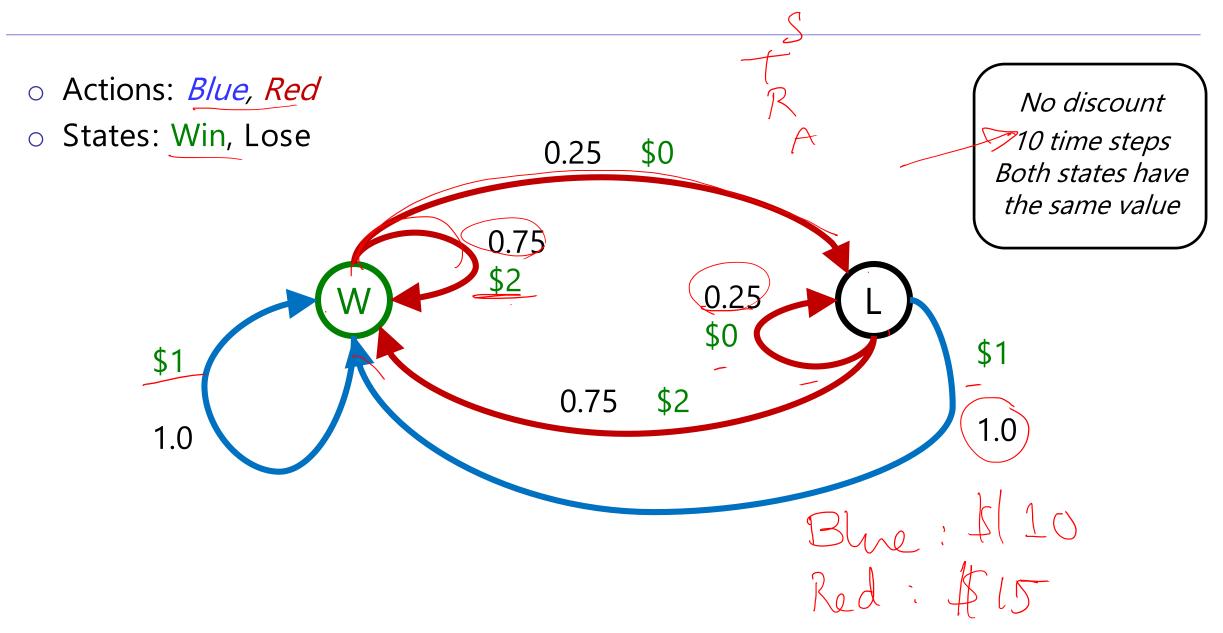
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Reinforcement Learning



Double Bandits

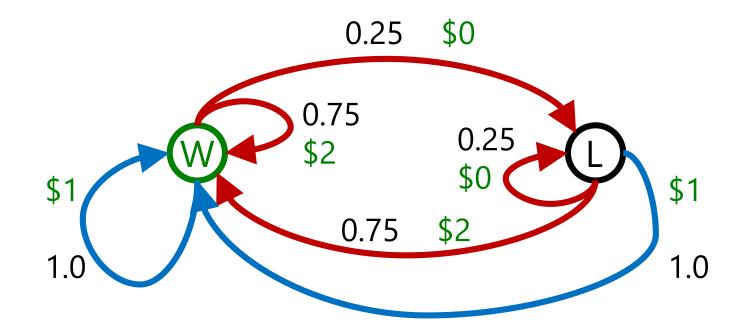
Double-Bandit MDP



Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - o You do not actually play the game!

No discount 10 time steps

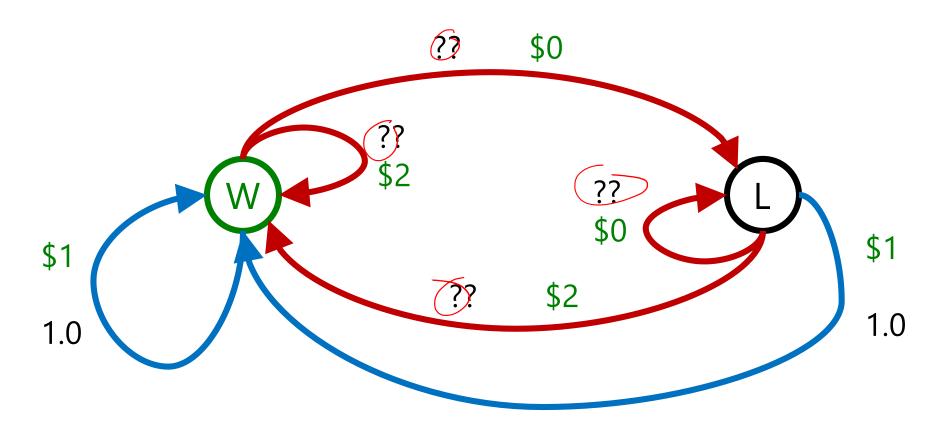


Let's Play!

\$2 \$2 \$0 \$2 \$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!

\$0 \$0 \$2 \$0 \$0 \$2 \$2 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - o Specifically, reinforcement learning
 - o There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out

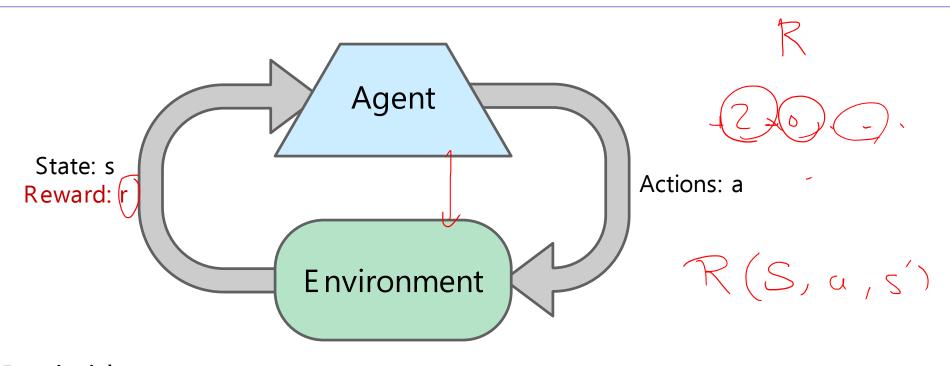
- Important ideas in reinforcement learning that came up
 - o Exploration: you have to try unknown actions to get information
 - o Exploitation: eventually, you have to use what you know
 - o Regret: even if you learn intelligently, you make mistakes
 - o Sampling: because of chance, you have to try things repeatedly
 - o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S \checkmark$
 - A set of actions (per state) A ∠
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - o I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

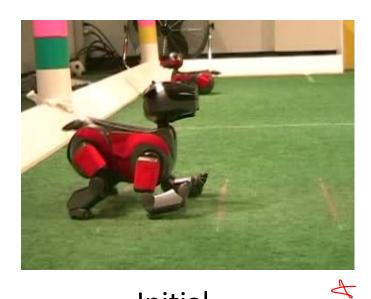
Reinforcement Learning



Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk



Initial

A Learning Trial

After Learning [1K Trials]

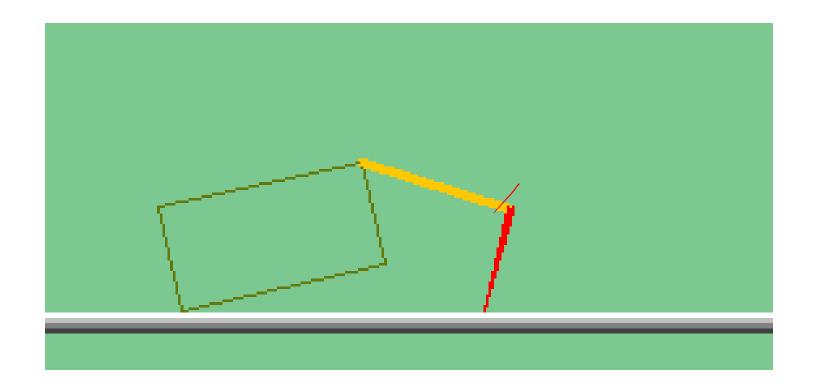
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

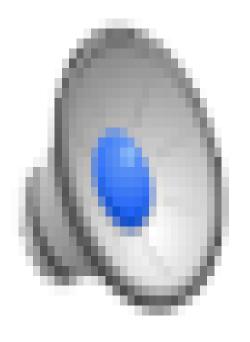
Robotics Rubik Cube

https://www.youtube.com/watch?v=x4O8pojMF0w

The Crawler!



Video of Demo Crawler Bot

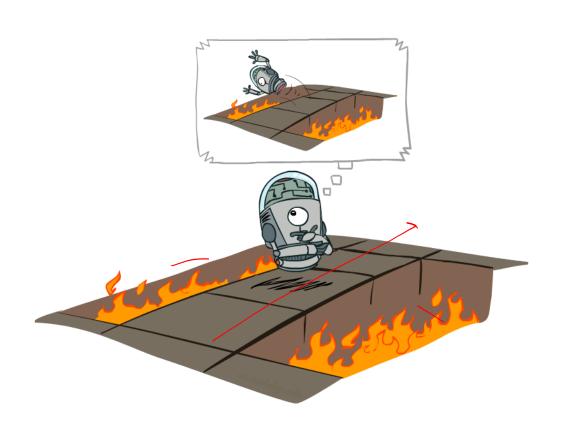


Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - \circ A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - o I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

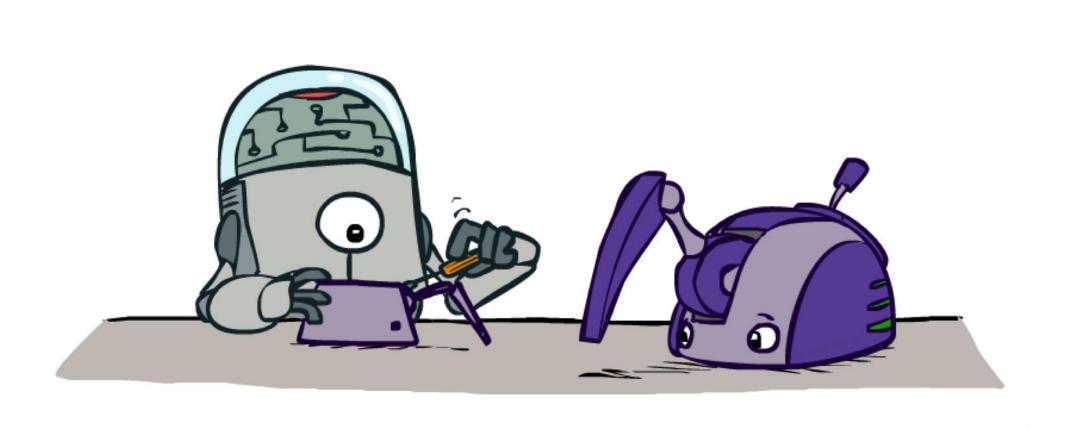
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



Model-Based Learning

Model-Based Idea:

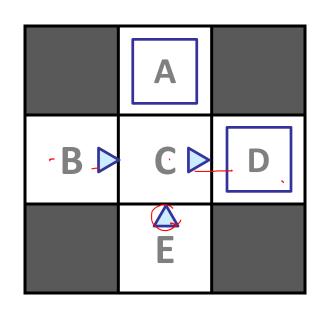
- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

- o Count outcomes s' for each s, a
- o Normalize to give an estimate $\widehat{T}(s, a, s')$
- o Discover each $\widehat{R}(s,a,s')$ when we experience (s, a, s')

o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Learned Models $\widehat{T}(s, a, s)$ T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25...

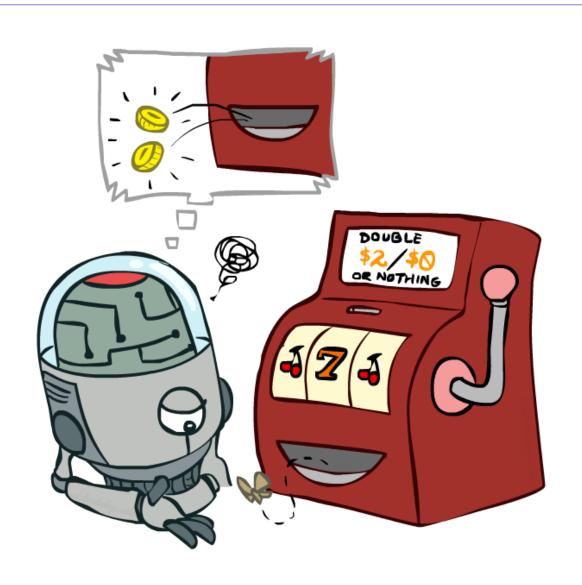
Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 $\widehat{R}(s,a,s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10 ...

Model-Free Learning

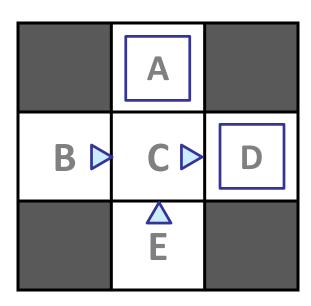


Direct Evaluation <

- Goal: Compute values for each state under
- π
- Idea: Average together observed sample values
 - \circ Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

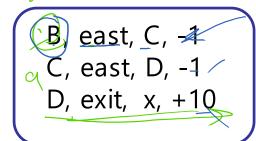
Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1



Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

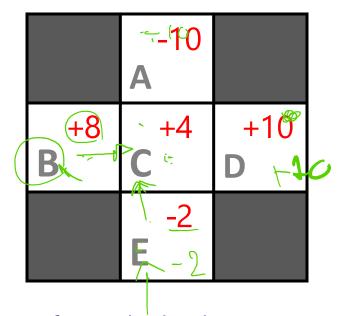
Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

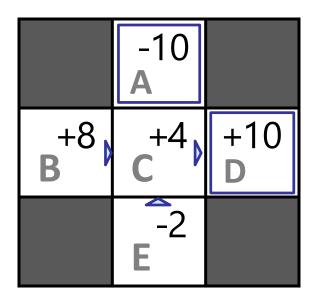


If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

- O What's good about direct evaluation?
 - o It's easy to understand
 - o It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - o Each state must be learned separately
 - So, it takes a long time to learn

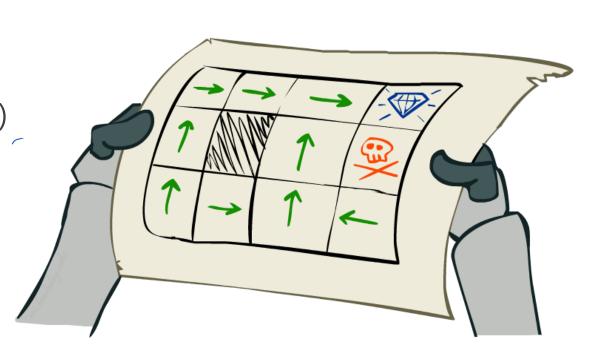
Output Values



If B and E both go to C under this policy, how can their values be different?

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - o Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - o Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - o Just execute the policy and learn from experience
 - o This is NOT offline planning! You actually take actions in the world.



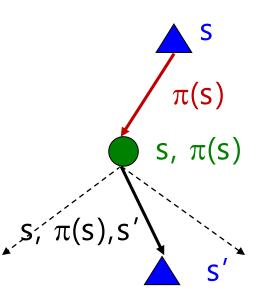
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - o Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s)=0$$

$$V_{k+1}^\pi(s)\leftarrow\sum_{s'}T(s,\pi(s),s')[R(s,\pi(s),s')+\gamma V_k^\pi(s')]$$
 Si, $\pi(s)$, Si This approach fully exploited the connections between the states

- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - o In other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

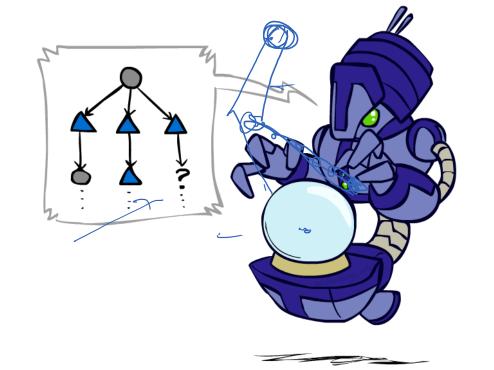
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

o Idea: Take samples of outcomes s' (by doing the action!) and

average

$$\int sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})
\sum sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})
\dots
\sum sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Temporal Difference Learning

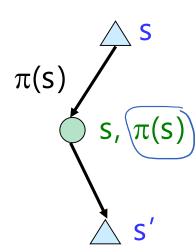
- Big idea: learn from every experience!
 - \circ Update V(s) each time we experience a transition (s, a, s', r)
 - o Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- o Move values toward value of whatever successor occurs: running average + Sample

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$



Exponential Moving Average

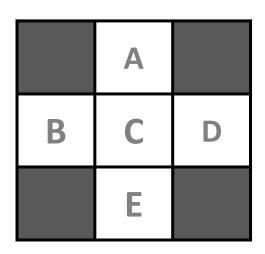
- Exponential moving average
 - The running interpolation update:

$$\bar{x}_{n} = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_{n}$$
extrant
$$(1 - \alpha) \widetilde{\chi}_{n-2} + \alpha \widetilde{\chi}_{n-1} + \alpha$$

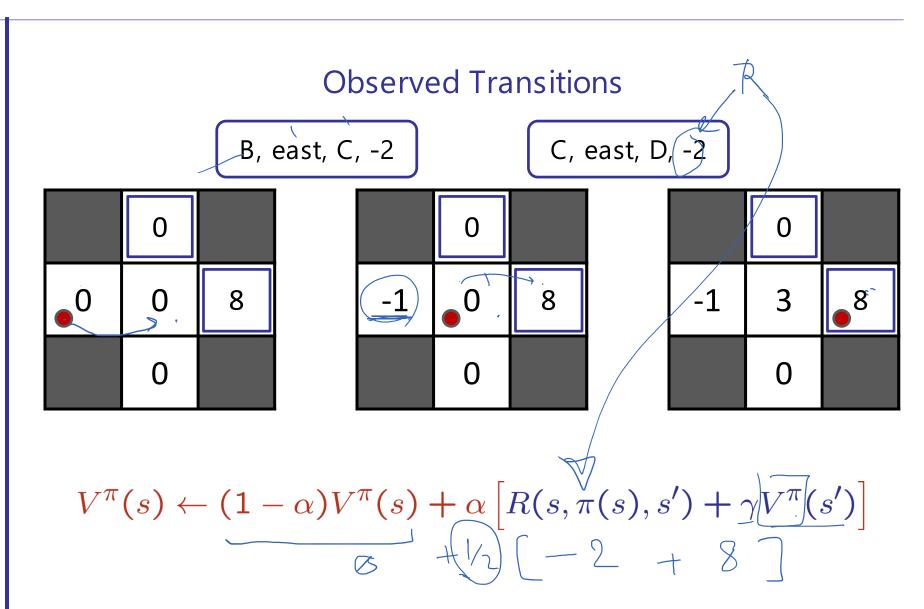
- Makes recent samples more important
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States



Assume: $\gamma = 1$, $\alpha = 1/2$



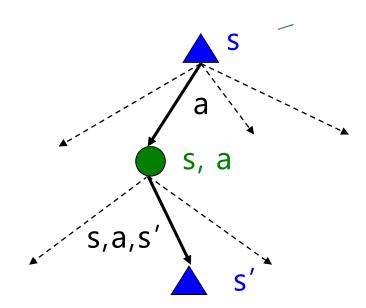
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!



Announcements

- Project Proposal: Feb 11th
- o Paper report: Feb 18th
- o PS3: Feb 22nd

Google Cloud credit is available for you to use.

Recap: Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - o A model T(s,a,s') €
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - o I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn
- Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal

Compute V*, Q*, π *

Evaluate a fixed policy π

Technique

Value / policy iteration

Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal

Technique

Compute V*, Q*, π *

Q-learning

Evaluate a fixed policy π

Value Learning

Temporal Difference Learning

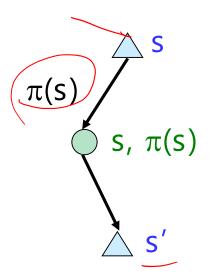
- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- o Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$



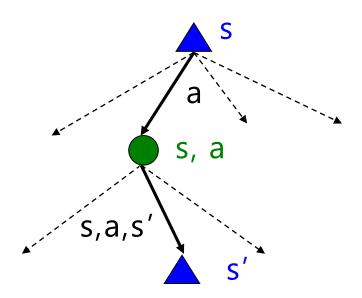
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) \neq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

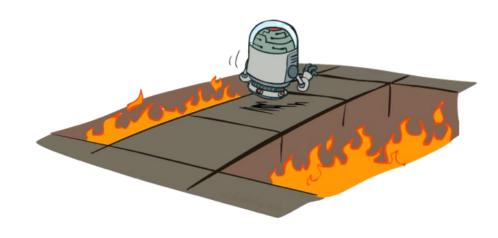
- Idea: learn Q-values, not values
- Makes action selection model-free too!



Discussion: Model-Based vs Model-Free RL

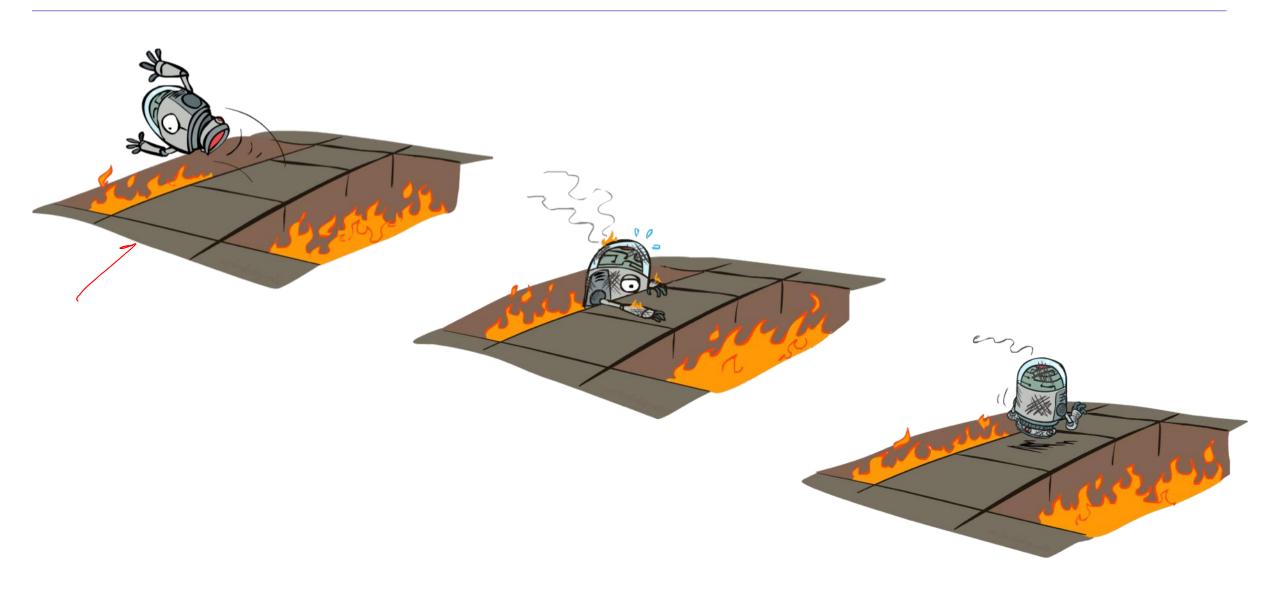
Model-Based vs. Model Free

Active vs. Passive



- Active Reinforcement Learning:
 - o act according to current optimal (based on Q-Values)
 - o but also explore...

Active Reinforcement Learning



Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

o In this case:

- o Learner makes choices!
- o Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - o Start with $V_0(s) = 0$, which we know is right
 - o Given $V_{k'}$ calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - \circ Start with $Q_0(s,a) = 0$, which we know is right
 - o Given Q_k , calculate the depth k+1 q-values for all q-states: $\sqrt{()}$

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

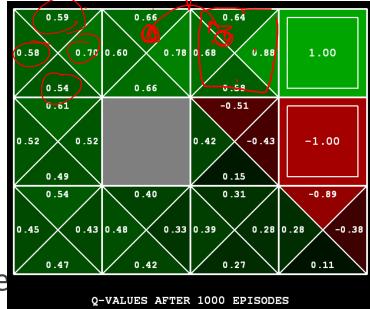
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - \circ Consider your old estimateQ(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
 no longer policy evaluation!

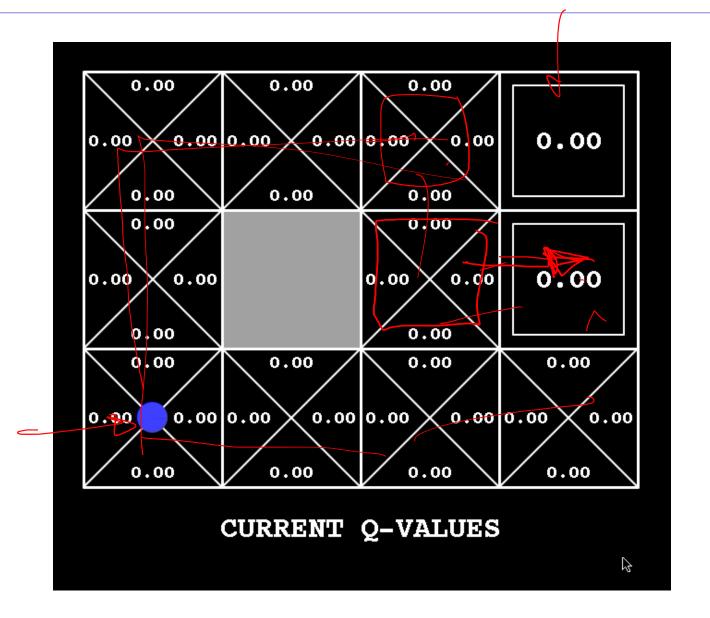
Incorporate the new estimate into a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

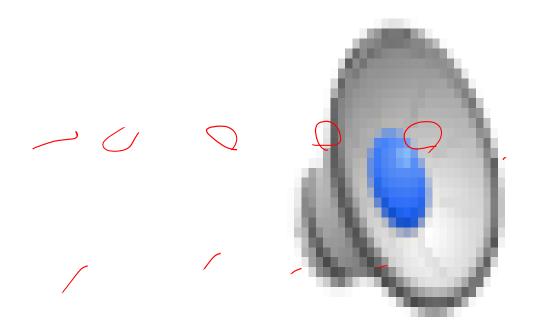


[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

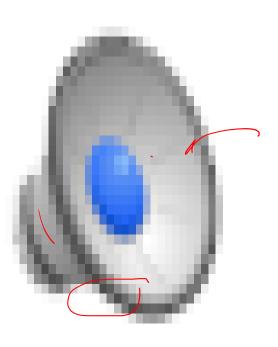
Q-Learning Demo



Video of Demo Q-Learning -- Gridworld

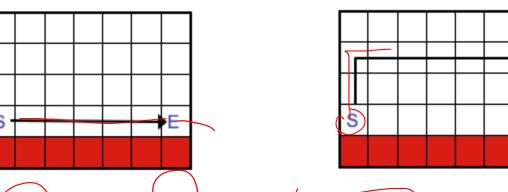


Video of Demo Q-Learning -- Crawler

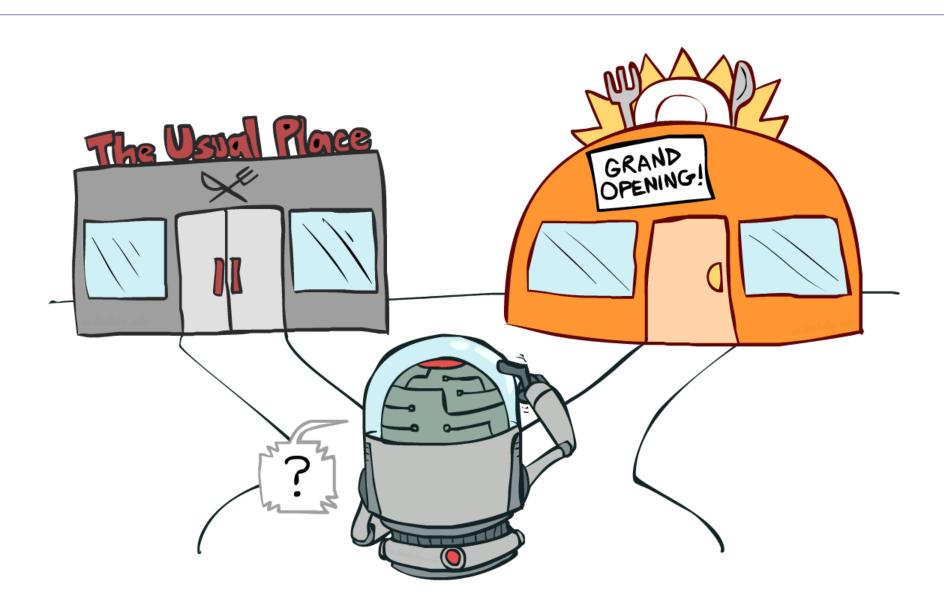


Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- o Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - o ... but not decrease it too quickly
 - o Basically, in the limit, it doesn't matter how you select actions



Exploration vs. Exploitation



How to Explore?

- Several schemes for forcing exploration
 - o Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - \circ With (small) probability ϵ , act randomly
 - With (large) probability 1-ε, act on current policy
 - o Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - o One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

O When to explore?

- o Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

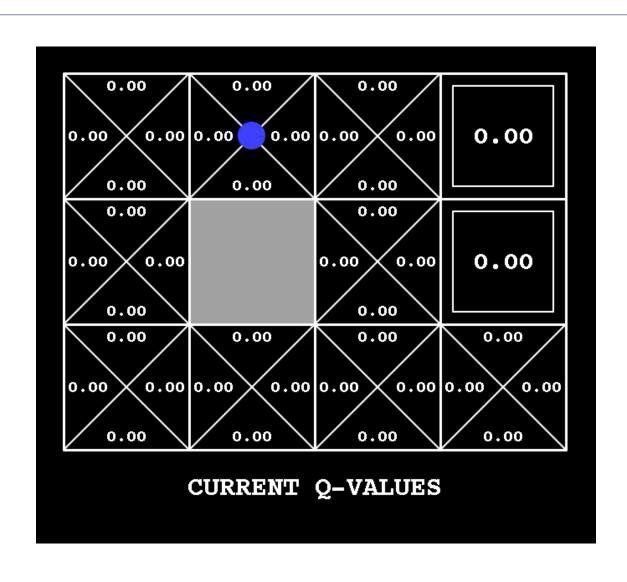
Exploration function

o Takes a value estimate u and a visit count n and returns an optimistic utility, e.g. f(u, k) = u + k/n

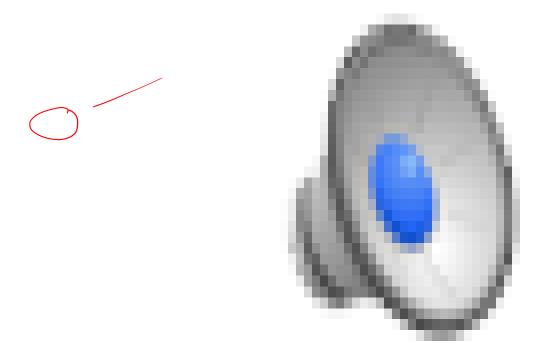
Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

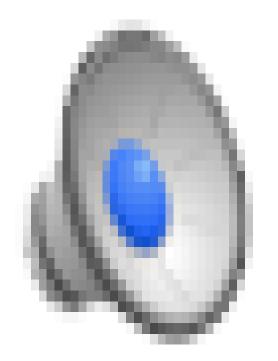
Q-Learn Epsilon Greedy



Video of Demo Q-learning – Epsilon-Greedy – Crawler

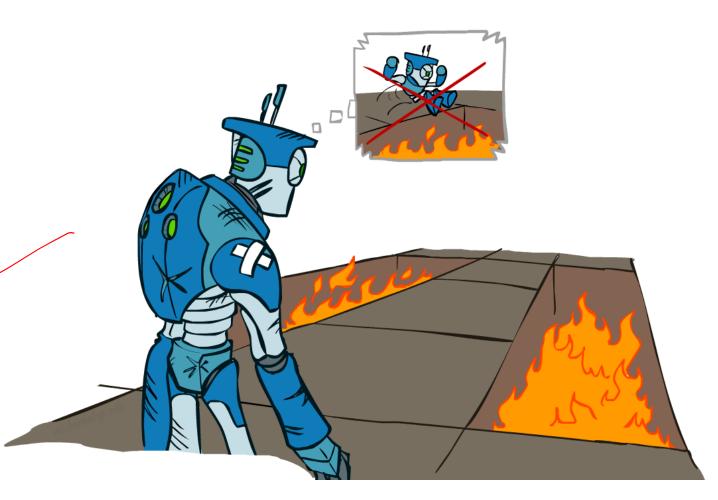


Video of Demo Q-learning – Exploration Function – Crawler

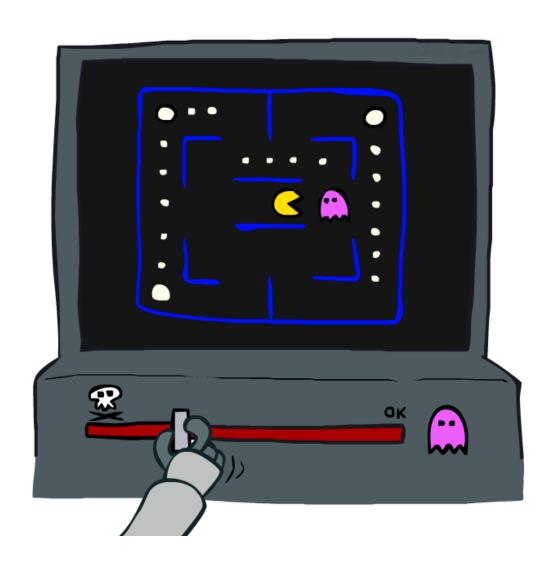


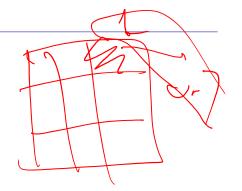
Regret

- Even if you learn the optimal policy you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret



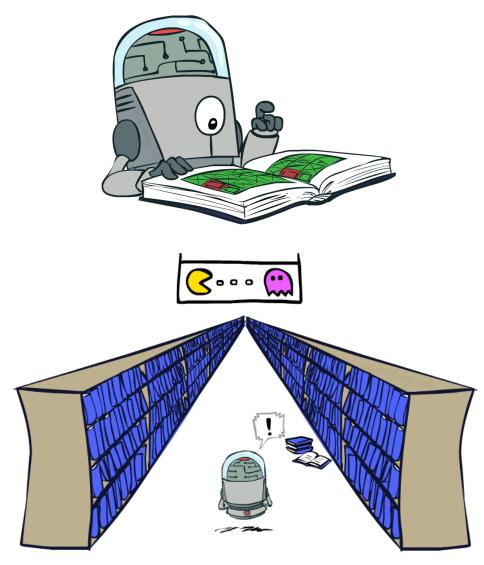
Approximate Q-Learning



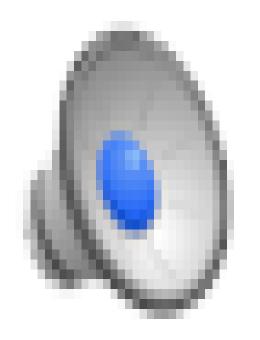


Generalizing Across States

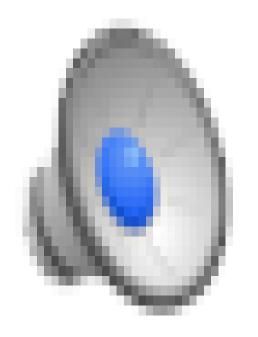
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - o Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



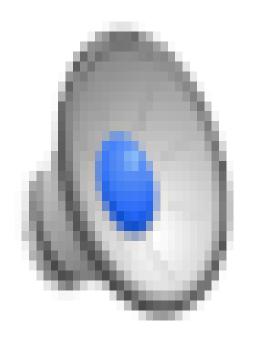
Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train

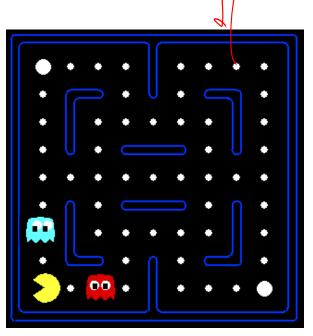


Video of Demo Q-Learning Pacman – Tricky – Watch All

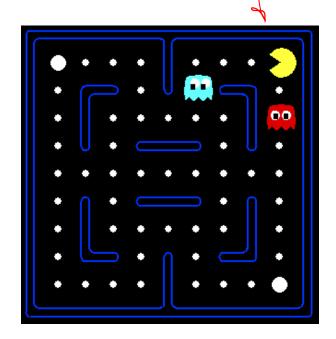


Example: Pacman

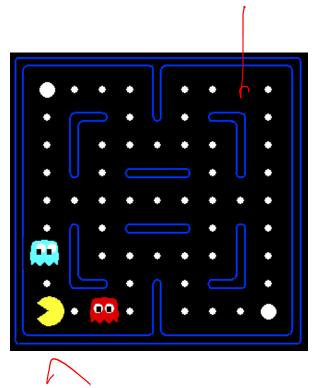
Let's say we discover through experience that this state is bad:



In naïve q-learning, we know nothing about this state:

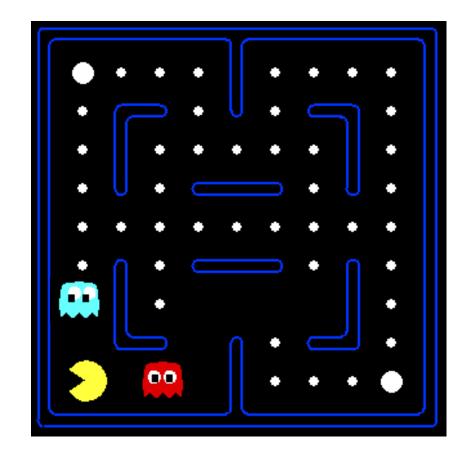


Or even this one!



Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - o Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \circ 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - o ... etc.
 - o Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

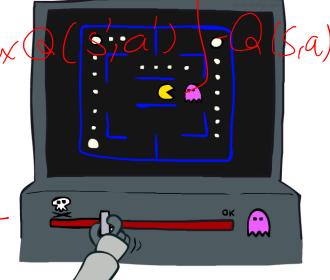
transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - \underline{Q(s, a)}$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference]
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

[r+ Y max
a'

Exact Q's

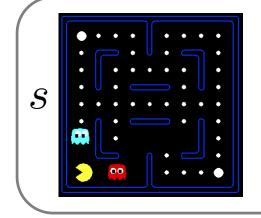
Approximate Q's



- O Intuitive interpretation:
 - Adjust weights of active features
 - o E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

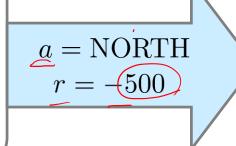
Example: Q-Pacman

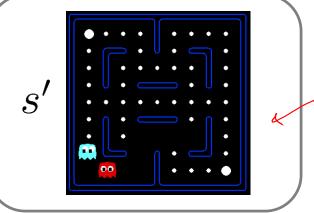
$$Q(s,a) = 4.0f_{DOT}(s,a) - 1.0f_{GST}(s,a)$$



$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$





$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$Q(s',\cdot)=0$$

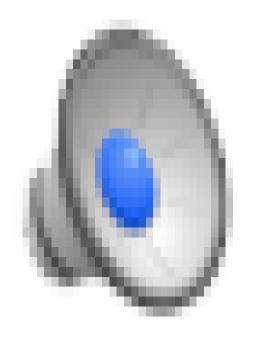
$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

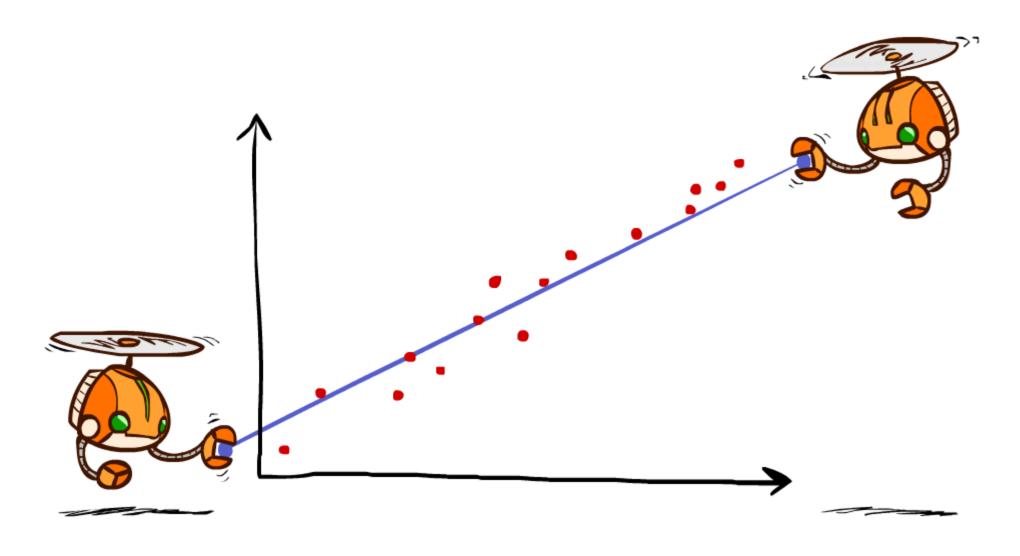
 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

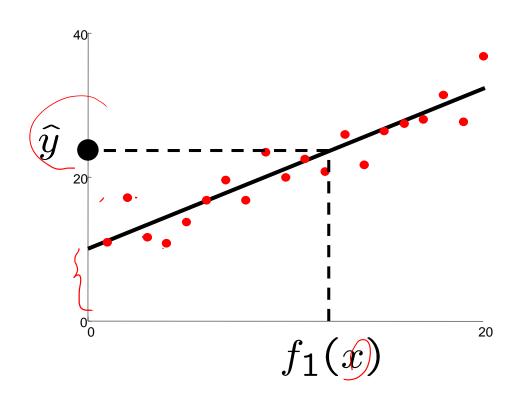
Video of Demo Approximate Q-Learning -- Pacman

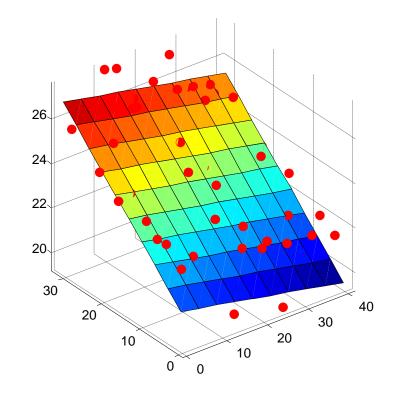


Q-Learning and Least Squares



Linear Approximation: Regression





Prediction:

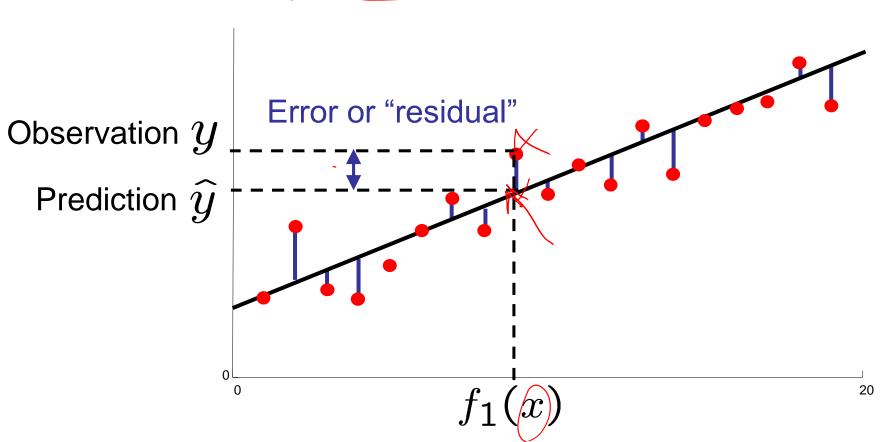
$$\hat{y} = \underline{w_0 + \underline{w_1} f_1(x)}$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_{i} - (\hat{y}_{i}))^{2} = \sum_{i} (y_{i} - \sum_{k} w_{k} f_{k}(x_{i}))^{2}$$



Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

"target"

$$\frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

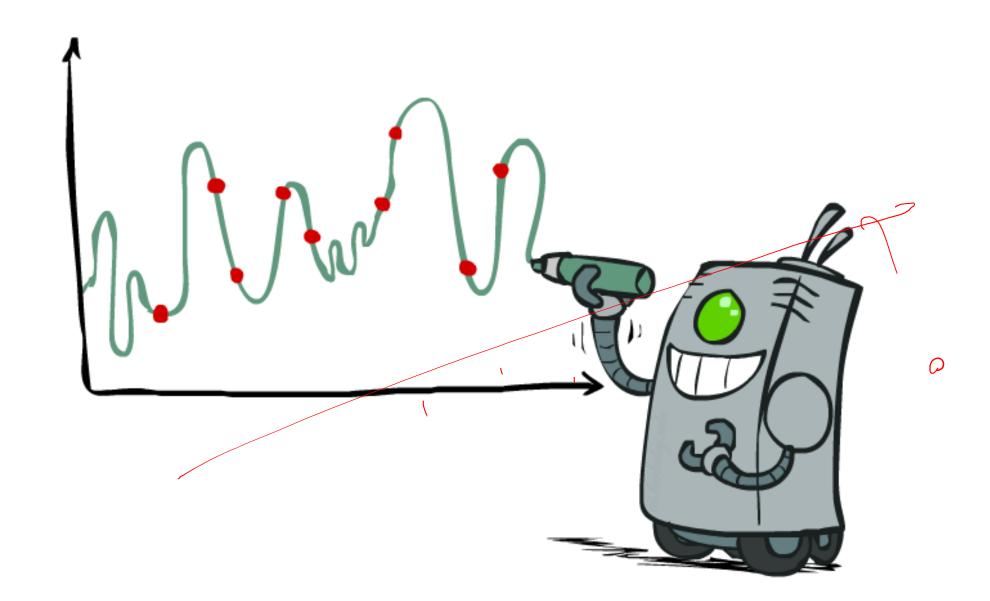
$$\frac{\partial \left(\operatorname{error}(w) \right)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left[r + \gamma \max_{a} Q(s', a') - Q(s, a) \right] f_{m}(s, a)$$

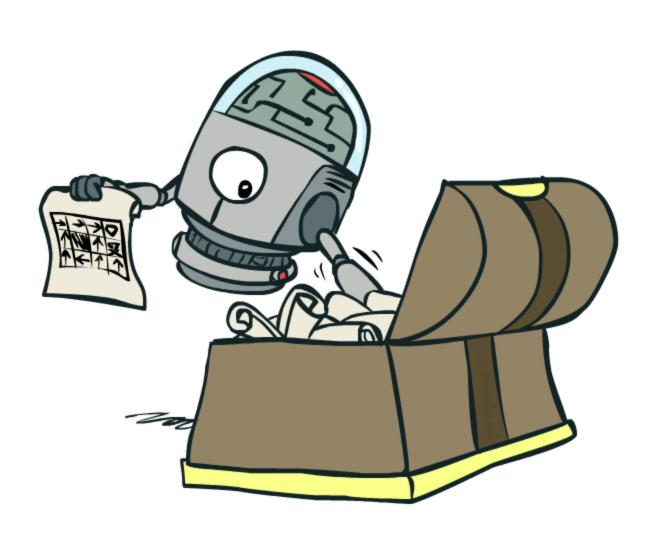
"prediction"

Overfitting: Why Limiting Capacity Can Help



New in Model-Free RL Playing Atari Games

Policy Search

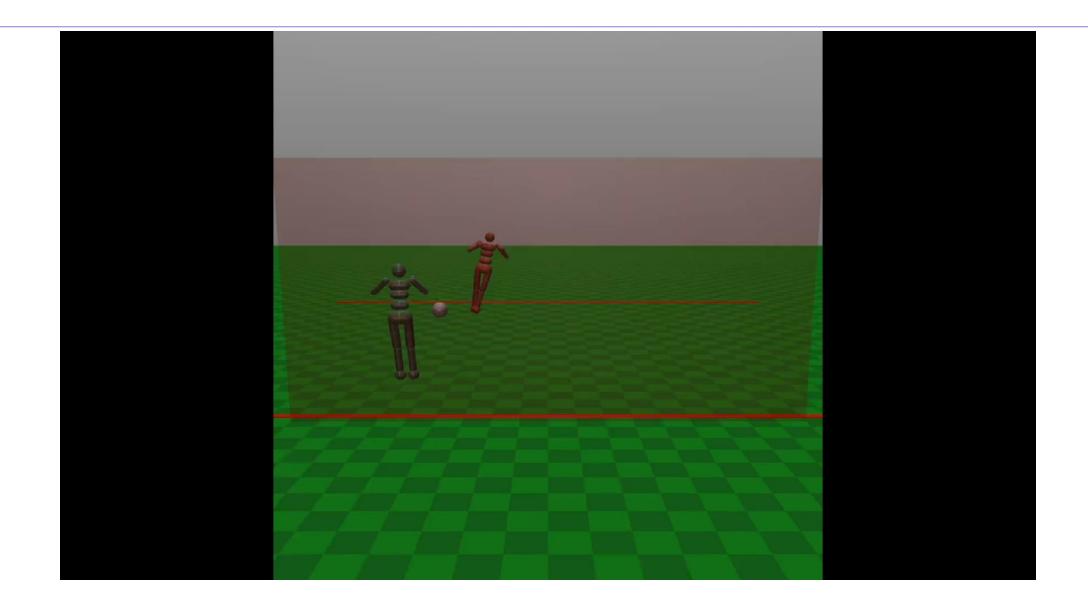


Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - o We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- o Problems:
 - o How do we tell the policy got better?
 - o Need to run many sample episodes!
 - o If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...



Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

*use features

Goal to generalize Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

*use features

Goal to generalize Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Conclusion

- We've seen how AI methods can solve problems in:
 - Search
 - o Games
 - Markov Decision Problems
 - o Reinforcement Learning
- Next up: Uncertainty and Learning!

