CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi
Reinforcement Learning

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer
Reinforcement Learning
Double Bandits
Double-Bandit MDP

- Actions: *Blue*, *Red*
- States: *Win*, *Lose*

No discount
10 time steps
Both states have the same value
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

<table>
<thead>
<tr>
<th>Value</th>
<th>Play Red</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Play Blue</td>
<td>10</td>
</tr>
</tbody>
</table>

No discount
10 time steps

[Diagram of a game with nodes and edges showing probabilities and payoffs]
Let’s Play!

$15

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

$112
Rules changed! Red’s win chance is different.
Let’s Play!
What Just Happened?

- That wasn’t planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn’t solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]
Robotics Rubik Cube

- [Link](https://www.youtube.com/watch?v=x4O8pojMF0w)

Solving Rubik’s Cube with a Robot Hand
The Crawler!
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s, a, s')$
 - A reward function $R(s, a, s')$

- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
<td>E, north, C, -1</td>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
<td>C, east, A, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
</tr>
</tbody>
</table>

Learned Model

$T(s, a, s')$

$T(B, \text{east}, C) = 1.00$
$T(C, \text{east}, D) = 0.75$
$T(C, \text{east}, A) = 0.25$
...

$R(s, a, s')$

$R(B, \text{east}, C) = -1$
$R(C, \text{east}, D) = -1$
$R(D, \text{exit, x}) = +10$
...

$\hat{T}(s, a, s')$

$\hat{T}(B, \text{east}, C) = 0.34$
$\hat{T}(C, \text{east}, D) = 0.40$
Model-Free Learning
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

$$V(B)$$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

If B and E both go to C under this policy, how can their values be different?
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

If B and E both go to C under this policy, how can their values be different?
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- In this case:
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

\[
V_0^\pi(s) = 0
\]

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

 $$V^{\pi}_{k+1}(s) \leftarrow \frac{1}{n} \sum_{i} \text{sample}_i$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

 - $\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V^{\pi}_{k}(s'_1)$
 - $\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V^{\pi}_{k}(s'_2)$
 - \ldots
 - $\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V^{\pi}_{k}(s'_n)$
Temporal Difference Learning

- **Big idea:** learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:
$$ \text{Sample} = R(s, \pi(s), s') + \gamma V^\pi(s') $$

Update to $V(s)$:
$$ V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + \alpha \text{Sample} $$

Same update:
$$ V^\pi(s) \leftarrow V^\pi(s) + \alpha (\text{Sample} - V^\pi(s)) $$

\[\pi(s) \quad s, \pi(s) \quad s', \pi(s) \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
 - Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$

Observed Transitions

- B, east, C, -2
- C, east, D, -2

States

A B C D E
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q(s, a)
\]

\[
Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]
\]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Announcements

- Project Proposal: Feb 11th
- Paper report: Feb 18th
- PS 3: Feb 22nd

- Google Cloud credit is available for you to use.
Recap: Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$

- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

- Big Idea: Compute all averages over T using sample outcomes
The Story So Far: MDPs and RL

<table>
<thead>
<tr>
<th>Known MDP: Offline Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
</tr>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
</tr>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown MDP: Model-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
</tr>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
</tr>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown MDP: Model-Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
</tr>
<tr>
<td>Compute $V^$, $Q^$, π^*</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
</tr>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>Q-learning</td>
</tr>
<tr>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

 \[
 \text{Sample of } V(s): \quad \text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')
 \]
 \[
 \text{Update to } V(s): \quad V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample}
 \]
 \[
 \text{Same update:} \quad V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))
 \]
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q(s, a)
\]

\[
Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]
\]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Discussion: Model-Based vs Model-Free RL

- Model-Based vs. Model Free

- Active vs. Passive

- Active Reinforcement Learning:
 - act according to current optimal (based on Q-Values)
 - but also explore...
Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s, a, s')$
 - You don’t know the rewards $R(s, a, s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is **NOT** offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:

 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s, a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:

 $$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$
Q-Learning

- Q-Learning: sample-based Q-value iteration
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn \(Q(s,a) \) values as you go
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s,a) \)
 - Consider your new sample estimate:
 \[\text{sample} = R(s,a,s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \text{[sample]} \]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]
Q-Learning Demo

CURRENT Q-VALUES
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions
Exploration vs. Exploitation
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + \frac{k}{n}$
 - Regular Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Modified Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

- Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Q-Learn Epsilon Greedy
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Video of Demo Q-learning – Exploration Function – Crawler
Regret

- Even if you learn the optimal policy you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Video of Demo Q-Learning Pacman – Tiny – Watch All
Video of Demo Q-Learning Pacman – Tiny – Silent Train
Video of Demo Q-Learning Pacman – Tricky – Watch All
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Feature-Based Representations

- **Solution**: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \(1 / (\text{dist to dot})^2\)
 - Is Pacman in a tunnel? (0/1)
 - \(\ldots\ldots\text{ etc.}\)
 - Is it the exact state on this slide?
 - Can also describe a q-state \((s, a)\) with features (e.g. action moves closer to food)
Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers

- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear Q-functions:**

 transition \(= (s, a, r, s') \)

 difference \(= [r + \gamma \max_{a'} Q(s', a')] - Q(s, a) \)

 \(Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \)

 \(w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \)

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares

\[\left[r + \gamma \max_a Q(s, a) \right] - Q(s, a) \]
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \]

\[r = -500 \]

\[Q(s, \text{NORTH}) = +1 \]

\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Video of Demo Approximate Q-Learning -- Pacman
Q-Learning and Least Squares
Linear Approximation: Regression

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Optimization: Least Squares

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2$$

$$\frac{\partial \text{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

“target” “prediction”
Overfitting: Why Limiting Capacity Can Help
New in Model-Free RL
Playing Atari Games
Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate \(V / Q \) best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
Summary: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

*use features to generalize

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

*use features to generalize

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Conclusion

- We’ve seen how AI methods can solve problems in:
 - Search
 - Games
 - Markov Decision Problems
 - Reinforcement Learning

- Next up: Uncertainty and Learning!