
CSE 573 p: Artificial

Intelligence

Hanna Hajishirzi

Markov Decision Processes

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Announcements

o HW1: Jan 28.

o PS2: Feb 4th

o Next class: Vote?

o Project proposals: Feb 11th

o Paper review: Feb 18th

2

Project Proposal

o Project proposals: Feb 11th

o Pick projects close to you interests, or select from here: list of

potential projects. Your final project can also be a re-

implementation of one of the recent papers from

AI/ML/NLP/Computer vision conferences.

o The project proposal is a 1-page summary of the project

topic, motivation, definition, dataset, and resources. It

should also include the milestones, detailed experiment

plan, and the timeline to complete each milestone.

3

https://docs.google.com/document/d/1InXtHeGvRzno42P2kafMHrqC5UyxRYRhnPNV4AiDMa4/edit?usp=sharing

Paper Review

o Paper review:

o 1. Describe what problem or question this paper addresses, and

the main contributions that it makes towards a solution or answer.

a. Problem/Question:

o b. Solution/approach:

o c. Contributions (list at least two):

o 2. Evaluate the paper in terms of novelty, significance, and

empirical results. 3. Describe the main strengths you see in

the paper. 4. Describe critiques and weaknesses you see in

the paper.
4

Review and Outline
Outline

§ Adversarial Games

§ Minimax search

§ α-β search

§ Evaluation functions

§ Multi-player, non-0-sum

§ Stochastic Games

§ Expectimax

§ Markov Decision Processes

§ Reinforcement Learning

Non-Deterministic Search

Example: Grid World

 A maze-like problem

 The agent lives in a grid

 Walls block the agent’s path

 Noisy movement: actions do not always go as

planned

 80% of the time, the action North takes the agent

North

(if there is no wall there)

 10% of the time, North takes the agent West; 10%

East

 If there is a wall in the direction the agent would have

been taken, the agent stays put

 The agent receives rewards each time step

 Small “living” reward each step (can be negative)

 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

o An MDP is defined by:
o A set of states s  S

o A set of actions a  A

o A transition function T(s, a, s’)
o Probability that a from s leads to s’, i.e., P(s’| s, a)

o Also called the model or the dynamics

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	…
…

T(s31,	N,	s11)	=	0
…

T(s31,	N,	s32)	=	0.8
T(s31,	N,	s21)	=	0.1
T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

T(s11,	E,	…
…

T(s31,	N,	s11)	=	0
…

T(s31,	N,	s32)	=	0.8
T(s31,	N,	s21)	=	0.1
T(s31,	N,	s41)	=	0.1…

T	is	a	Big	Table!
11 X	4	x	11	=	484	entries

For	now,	we	give	this	as	input	to	the	agent

Markov Decision Processes

o An MDP is defined by:
o A set of states s  S

o A set of actions a  A

o A transition function T(s, a, s’)
o Probability that a from s leads to s’, i.e., P(s’| s, a)

o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	

…
R(s32,	N,	s33)	=	-0.01

…
R(s32,	N,	s42)	=	-1.01

R(s33,	E,	s43)	=		0.99
…

Cost	of	breathing

R	is	also	a	Big	Table!

For	now,	we	also	give	this	to	the	agent

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	

…
R(s32,	N,	s33)	=	-0.01

…
R(s32,	N,	s42)	=	-1.01

R(s33,	E,	s43)	=		0.99
…

Cost	of	breathing

R	is	also	a	Big	Table!

For	now,	we	also	give	this	to	the	agent

Markov Decision Processes

o An MDP is defined by:
o A set of states s  S

o A set of actions a  A

o A transition function T(s, a, s’)
o Probability that a from s leads to s’, i.e., P(s’| s, a)

o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search

o We’ll have a new tool soon

What is Markov about MDPs?

o “Markov” generally means that given the present state, the

future and the past are independent

o For Markov decision processes, “Markov” means action

outcomes depend only on the current state

o This is just like search, where the successor function could

only depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

o In deterministic single-agent search

problems, we wanted an optimal plan, or

sequence of actions, from start to a goal

o For MDPs, we want an optimal

policy *: S → A

o A policy  gives an action for each state

o An optimal policy is one that maximizes

expected utility if followed

o An explicit policy defines a reflex agent
Optimal policy when R(s, a, s’) = -0.4 for

all non-terminals s

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing

o A robot car wants to travel far, quickly

o Three states: Cool, Warm, Overheated

o Two actions: Slow, Fast

o Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

o What preferences should an agent have over reward sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

o It’s reasonable to maximize the sum of rewards

o It’s also reasonable to prefer rewards now to rewards later

o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

o How to discount?

o Each time we descend a level,

we multiply in the discount once

o Why discount?

o Think of it as a gamma chance

of ending the process at every

step

o Also helps our algorithms

converge

o Example: discount of 0.5

o U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

o U([1,2,3]) < U([3,2,1])

Quiz: Discounting

o Given:

o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic

o Quiz 1: For  = 1, what is the optimal policy?

o Quiz 2: For  = 0.1, what is the optimal policy?

o Quiz 3: For which  are West and East equally good when in state d?

<- <- <-

<- <- ->

1=10 3

Infinite Utilities?!

 Problem: What if the game lasts forever? Do we get infinite

rewards?

 Solutions:

 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)

 Policy  depends on time left

 Discounting: use 0 <  < 1

 Smaller  means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will

eventually be reached (like “overheated” for racing)

Recap: Defining MDPs

o Markov decision processes:
o Set of states S

o Start state s0

o Set of actions A

o Transitions P(s’|s,a) (or T(s,a,s’))

oRewards R(s,a,s’) (and discount )

o MDP quantities so far:
o Policy = Choice of action for each state

oUtility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

Solving MDPs

MDP Search Trees

o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Snapshot Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States (Bellman Equations)

o Fundamental operation: compute the (expectimax) value of a state

o Expected utility under optimal action

o Average sum of (discounted) rewards

o This is just what expectimax computed!

o Recursive definition of value:

a

s

s, a

s,a,s’

s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

o We’re doing way too much

work with expectimax!

o Problem: States are

repeated

o Idea quantities: Only compute

needed once

o Problem: Tree goes on

forever

o Idea: Do a depth-limited

computation, but with

increasing depths until change

is small

o Note: deep parts of the tree

eventually don’t matter if γ < 1

Time-Limited Values

o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the game

ends in k more time steps

o Equivalently, it’s what a depth-k expectimax would give from

s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Solving MDPs

Value Iteration

o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

o Repeat until convergence

o Complexity of each iteration: O(S2A)

o Theorem: will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values

o Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

0 0

0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Example: Value Iteration

0 0

0

2

Assume no discount!

S: .5*1+.5*1=1

F: -10

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

S: 1+2=3

F:

.5*(2+2)+.5*(2+1)=3.5

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

3.5 2.5 0

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’

Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

o Value iteration is just a fixed point solution method
o … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Convergence*

o How do we know the Vk vectors are going to converge?

o Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

o Case 2: If the discount is less than 1

o Sketch: For any state Vk and Vk+1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

o The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

o That last layer is at best all RMAX

o It is at worst RMIN

o But everything is discounted by γk that far out

o So Vk and Vk+1 are at most γk max|R| different

o So as k increases, the values converge

Recap: Markov Decision Processes

o An MDP is defined by:
o A set of states s  S

o A set of actions a  A

o A transition function T(s, a, s’)
o Probability that a from s leads to s’, i.e., P(s’| s, a)

o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state

o Maybe a terminal state

o MDPs are non-deterministic search problems
o One way to solve them is with expectimax search

o We’ll have a new tool soon

Announcements

o PS2: Feb 4th

o Next class: Vote?

o Project proposals: Feb 11th

o Paper review: Feb 18th

69

Recap: MDPs

o Search problems in uncertain environments

oModel uncertainty with transition function

o Assign utility to states. How? Using reward functions

oDecision making and search in MDPs <-- Find a sequence of

actions that maximize expected sum of rewards

oValue of a state

oQ-Value of a state

oPolicy for a state

70

The Bellman Equations

o Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

o These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

Solving MDPs

o Finding the best policy  mapping of actions to states

o So far, we have talked about one method

o Value iteration: computes the optimal values of states

Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

o Value iteration is just a fixed point solution method
o … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Bellman Updates

Bellman Updates

Example: Value Iteration

Policy Methods

Policy Evaluation

Fixed Policies

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy (s), then the tree would be simpler – only one action per

state

o … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do

Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s

under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and

following 

o Recursive relation (one-step look-ahead / Bellman

equation):

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

o How do we calculate the V’s for a fixed policy ?

o Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Let’s think…

o Take a minute, think about value iteration and policy

evaluation

oWrite down the biggest questions you have about them.

Policy Extraction

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?

o It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by the

values

Computing Actions from Q-Values

o Let’s imagine we have the optimal

q-values:

o How should we act?

o Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than

values!

Policy Iteration

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence

o Step 2: Policy improvement: update policy using one-step look-ahead with

resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is policy iteration

o It’s still optimal!

o Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy , find values with policy evaluation:

o Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy extraction

o One-step look-ahead:

Comparison

o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:

o Every iteration updates both the values and (implicitly) the policy

o We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:

o We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we’re done)

o Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o So you want to….

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o They basically are – they are all variations of Bellman updates

o They all use one-step lookahead expectimax fragments

o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

Next Topic: Reinforcement Learning!

