CSE 573 P:
Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Search

o Agents that Plan Ahead

o Search Problems

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search
o Uniform-Cost Search

Agents that Plan

Reflex Agents

o Reflex agents:

o Choose action based on current percept
(and maybe memory)

o May have memory or a model of the world’s
current state

o Do not consider the future consequences of
their actions

o Consider how the world IS

o Can a reflex agent be rational?

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE:

Planning Agents

o Planning agents:
o Ask “what if”

o Decisions based on (hypothesized)
consequences of actions

o Must have a model of how the world evolves
INn response to actions

o Must formulate a goal (test)
o Consider how the world WOULD BE

o Optimal vs. complete planning

o Planning vs. replanning

Video of Demo Replanning

SCORE: 0

Video of Demo Mastermind

SCORE:

Search Problems

Search Problems

o A search problem consists of:

peneeen 11 [.[1.1

o A successor function N 1.0 n

\ !
I’E”’ 1-0

o A start state and a goal test

o A solution Is a sequence of actions (a plan)
which transforms the start state to a goal state

Search: itis notjust for agents

Route Hardware Planning optimal
Planning verification repair sequences

| Memory Controlle

m B W g

B ..uo # ﬁ s ek 9 ¢ 'o"‘ e ’ | : Sha;'ed ‘L:.3 Cache }
S e T L | i gt
o Search:

Modeling the world

Example: Traveling in Romania

o State space:
o Cities
o Successor function:

o Roads: Go to adjacent city with
cost = distance

o Start state:
o Arad

o Goal test:
o Is state == Bucharest?

o Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

o Problem: Pathing o Problem: Eat-All-Dots
o States: (x,y) location o States: {(x,y), dot
o Actions: NSEW booleans}
o Successor: update location o Actions: NSEW
only o Successor: update
o Goaltest: is (x,y)=END location and possibly a dot
boolean

o Goal test: dots all false

State Space Sizes?

o World state:
o Agent positions: 120
o Food count: 30

o Ghost positions: 12
o Agentfacing: NSEW

o How many
o World states?
120x(239x(122)x4
o States for pathing?
120
o States for eat-all-dots?
120x(239)

State Representation

o Real-world applications:
o Requires approximations and heuristics

o Need to design state representation so that search is feasible
o Only focus on important aspects of the state
oE.q., Use features to represent world states

Safe Passage

o Problem: eat all dots while keeping the ghosts perma-scared

o What does the state space have to specify?
o (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

o State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations
o Arcs represent successors (action results)

o The goal test is a set of goal nodes (maybe only
one)

o In a state space graph, each state occurs
only once!

o We can rarely build this full graph in
memory (it's too big), butit's a useful idea

Search Trees

' _ This is now / start
::N"A"I.O/ w‘o
u H _ Possible futures

o A search tree:
o The startstate is the root node
o Children correspond to successors
o Nodes show states, but correspond to PLANS that achieve those states
o For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-~

Search Tree

~

——
d P
— T '
b C e r q
I I —_ N 1
a a r p f
N 1 ' N
p f q C G
[] /\ "
q C G a

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

/N
a b\
(s} (6) N]

G a G
a/\ l:/)\G
/ \

G
/ \

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

M Vaslui

Hirsova

86

Eforie

Searching with a Search Tree

o Search:

o Expand out potential plans (tree nodes)

o Maintain a fringe of partial plans under
consideration

o Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)

Search Algorithms

o Uninformed Search Methods
o Depth-First Search
o Breadth-First Search
o Uniform-Cost Search

o Heuristic Search Methods
o Best First / Greedy Search
o A*

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

o Complete: Guaranteed to find a solution if one exists?
o Optimal: Guaranteed to find the least cost path?
o Time complexity? ;
o Space complexity? 1 node
b nodes

o Cartoon of search tree: b nodes

o b is the branching factor m tiers <

o m is the maximum depth

o solutions at various depths

\ b™ nodes

o Number of nodes in entire tree?
o 1+b+b2+b™m=0(bm

O

O

O

O

Depth-First Search (DFS) Properties

What nodes DFS expand?

o Some left prefix of the tree.
o Could process the whole tree!
o If mis finite, takes time O(b™)

How much space does the fringe take?
o Only has siblings on path to root, so O(bm)

Is it complete?

o m could be infinite, so only if we prevent
cycles (more later)

Is it optimal?

o No, it finds the “leftmost” solution, regardless
of depth or cost

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Breadth-First Search

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe

is a FIFO queue
-
Search
Y ® © ® ® © @
Tiers | TN AN
@ a h r p q f
N | | RN
N p aq f 9 ¢ G
| PN |
q G a

O

O

O

O

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

o Processes all nodes above shallowest
solution

o Let depth of shallowest solution be s
o Search takes time O(b®)

How much space does the fringe
take?

o Has roughly the last tier, so O(bs)

Is it complete?
o S must be finite if a solution exists, so yes!

Is it optimal?
o Only if costs are all 1 (more on costs later)

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

BFS

Algorithm Complete |Optimal |[Time Space
/ Path o
DFS \(Iivhe?king Y N O(b) O(bm)
BFS Y Y* O(b%) O(b%)
g 1 node
_ b nodes
dtiers < b2 nodes
_ bs nodes
b™ nodes

C

Quiz: DFS vs BFS

o When will BFS outperform DFS?

o When will DFS outperform BFS?

lterative Deepening

o ldea: get DFS’s space advantage with
BFS’s time / shallow-solution
advantages

o Run a DFS with depth limit 1. 1f no
solution...

o Run a DFS with depth limit 2. If no
solution...

o Run a DFS with depth limit 3.

o Isn’t that wastefully redundant?

o Generally most work happens in the lowest
level searched, so not so bad!

/
/

/

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover How?
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

Uniform Cost Search (UCS) Properties

o What nodes does UCS expand?

o Processes all nodes with cost less than cheapest
solution!

o If that solution costs C* and arcs cost at least ¢, then tge/g “tiers” <
“effective depth” is roughly C*/¢

o Takes time O(b®"¢) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(b®*%)

)
O/

o Is it complete?

o Assuming best solution has a finite cost and minimum
arc cost is positive, yes!

o Is it optimal?
o Yes!

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:

o Explores options in every “direction”
o No Iinformation about goal location

o We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

The One Queue

o All these search algorithms are
the same except for fringe
strategies

o Conceptually, all fringes are priority
gueues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and gqueues

o Can even code one implementation
that takes a variable queuing object

Search and Models

o Search operates over
models of the world

o The agent doesn't
actually try all the plans
out in the real world!

o Planning is all “in
simulation”

o Your search is only as
good as your models...

To Do:

o Try python practice (PSO)
o Won't be graded

o PS1 on the website
o Start ASAP
o Submission: Canvas

o Website:
o Do readings for search algorithms

o Try this search visualization tool
o http://giao.github.io/PathFinding.js/visual/

