CSE 573 PMP: Introduction to Artificial Intelligence

Hanna Hajishirzi
Hidden Markov Models

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer
Probability Summary

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if**: \(\forall x, y : P(x, y) = P(x)P(y) \)

- **X and Y are conditionally independent given Z if and only if**: \(X \perp Y | Z \)
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring

- Need to introduce time (or space) into our models
Markov Models

- Value of X at a given time is called the **state**

$$P(X_1) \quad P(X_t|X_{t-1})$$

- Parameters: called **transition probabilities** or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action
- A (growable) BN: We can always use generic BN reasoning on it if we truncate the chain at a fixed length

$$P(X_t) = ?$$
Markov Assumption: Conditional Independence

- Basic conditional independence:
 - Past and future independent given the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property
Example Markov Chain: Weather

- States: $X = \{\text{rain, sun}\}$
 - Initial distribution: 1.0 sun
 - CPT $P(X_t \mid X_{t-1})$:

<table>
<thead>
<tr>
<th>X_{t-1}</th>
<th>X_t</th>
<th>$P(X_t \mid X_{t-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>sun</td>
<td>0.9</td>
</tr>
<tr>
<td>sun</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>rain</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>rain</td>
<td>rain</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Two new ways of representing the same CPT.
Bayes Nets -- Independence

- Bayes Net: $P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))$
- Chain Rule: $P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1})$
Markov Models (Markov Chains)

A Markov model defines
- a joint probability distribution:

\[P(X_1, X_2, X_3, X_4) = \]

- More generally:

\[P(X_1, X_2, \ldots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2) \ldots P(X_T|X_{T-1}) \]

\[P(X_1, \ldots, X_n) = P(X_1) \prod_{t=2}^{N} P(X_t|X_{t-1}) \]

- One common inference problem:
 - Compute marginals \(P(X_t) \) for all time steps \(t \)

Why?
- Chain Rule, Indep. Assumption?
Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

\[P(X_2 = \text{sun}) = \sum_{x_1} P(x_1, X_2 = \text{sun}) = \sum_{x_1} P(X_2 = \text{sun}|x_1)P(x_1) \]

\[P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain}) \]

\[0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9 \]
Mini-Forward Algorithm

○ Question: What’s $P(X)$ on some day t?

\[P(x_1) = \text{known} \]

\[P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t) \]

\[= \sum_{x_{t-1}} P(x_t \mid x_{t-1})P(x_{t-1}) \]

Forward simulation
Example Run of Mini-Forward Algorithm

- From initial observation of sun

 \[
 \begin{pmatrix}
 1.0 \\
 0.0
 \end{pmatrix}
 \begin{pmatrix}
 0.9 \\
 0.1
 \end{pmatrix}
 \begin{pmatrix}
 0.84 \\
 0.16
 \end{pmatrix}
 \begin{pmatrix}
 0.804 \\
 0.196
 \end{pmatrix}
 \overset{\text{...}}{\rightarrow}
 \begin{pmatrix}
 0.75 \\
 0.25
 \end{pmatrix}
\]

- From initial observation of rain

 \[
 \begin{pmatrix}
 0.0 \\
 1.0
 \end{pmatrix}
 \begin{pmatrix}
 0.3 \\
 0.7
 \end{pmatrix}
 \begin{pmatrix}
 0.48 \\
 0.52
 \end{pmatrix}
 \begin{pmatrix}
 0.588 \\
 0.412
 \end{pmatrix}
 \overset{\text{...}}{\rightarrow}
 \begin{pmatrix}
 0.75 \\
 0.25
 \end{pmatrix}
\]

- From yet another initial distribution \(P(X_1) \):

 \[
 \begin{pmatrix}
 p \\
 1 - p
 \end{pmatrix}
 \overset{\text{...}}{\rightarrow}
 \begin{pmatrix}
 0.75 \\
 0.25
 \end{pmatrix}
\]
Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!
Video of Demo Ghostbusters Circular Dynamics
Stationary Distributions

- For most chains:
 - Influence of the initial distribution gets less and less over time.
 - The distribution we end up in is independent of the initial distribution

- Stationary distribution:
 - The distribution we end up with is called the stationary distribution P_∞ of the chain.
 - It satisfies

$$P_\infty(X) = P_{\infty+1}(X) = \sum_x P(X|x)P_\infty(x)$$
Example: Stationary Distributions

- Question: What’s $P(X)$ at time $t = \infty$?

$$P_\infty(\text{sun}) = P(\text{sun}|\text{sun})P_\infty(\text{sun}) + P(\text{sun}|\text{rain})P_\infty(\text{rain})$$

$$P_\infty(\text{rain}) = P(\text{rain}|\text{sun})P_\infty(\text{sun}) + P(\text{rain}|\text{rain})P_\infty(\text{rain})$$

$$P_\infty(\text{sun}) = 0.9P_\infty(\text{sun}) + 0.3P_\infty(\text{rain})$$

$$P_\infty(\text{rain}) = 0.1P_\infty(\text{sun}) + 0.7P_\infty(\text{rain})$$

$$P_\infty(\text{sun}) = 3P_\infty(\text{rain})$$

$$P_\infty(\text{rain}) = 1/3P_\infty(\text{sun})$$

Also:

$$P_\infty(\text{sun}) + P_\infty(\text{rain}) = 1$$

$$P_\infty(\text{sun}) = 3/4$$

$$P_\infty(\text{rain}) = 1/4$$
Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
 - Each web page is a possible value of a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - With prob. $1-c$, follow a random outlink (solid lines)

- Stationary distribution
 - Will spend more time on highly reachable pages
 - E.g. many ways to get to the Acrobat Reader download page
 - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)
Hidden Markov Models
Pacman – Sonar
Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step
Example: Weather HMM

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X_t \mid X_{t-1})$
 - Emissions: $P(E_t \mid X_t)$

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>R_t</th>
<th>$P(R_t \mid R_{t-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+r</td>
<td>0.7</td>
</tr>
<tr>
<td>+r</td>
<td>-r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>+r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>-r</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_t</th>
<th>U_t</th>
<th>$P(U_t \mid R_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+u</td>
<td>0.9</td>
</tr>
<tr>
<td>+r</td>
<td>-u</td>
<td>0.1</td>
</tr>
<tr>
<td>-r</td>
<td>+u</td>
<td>0.2</td>
</tr>
<tr>
<td>-r</td>
<td>-u</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Example: Ghostbusters HMM

- \(P(X_1) \) = uniform

- \(P(X|X') \) = usually move clockwise, but sometimes move in a random direction or stay in place

- \(P(R_{ij}|X) \) = same sensor model as before: red means close, green means far away.

\[
\begin{align*}
P(X_1) &= \begin{pmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{pmatrix} \\
P(X|X' =<1,2>) &= \begin{pmatrix} 1/6 & 1/6 & 1/2 \\ 0 & 1/6 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

\(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \)
Video of Demo Ghostbusters – Circular Dynamics -- HMM
Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state

- Does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]
Real HMM Examples

- **Robot tracking:**
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- **Speech recognition HMMs:**
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- **Machine translation HMMs:**
 - Observations are words (tens of thousands)
 - States are translation options
Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t | e_1, ..., e_t)$ (the belief state) over time.

- We start with $B_1(X)$ in an initial setting, usually uniform.

- As time passes, or we get observations, we update $B(X)$.

- The Kalman filter was invented in the 60’s and first implemented as a method of trajectory estimation for the Apollo program.
Example: Robot Localization

Example from
Michael Pfeiffer

Prob
0 1

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.
Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake
Example: Robot Localization

$t=2$

Prob

0 1
Example: Robot Localization

\[t=3 \]
Example: Robot Localization

![Diagram of robot localization with a grid and probability scale]

Prob

0

1

t=4
Example: Robot Localization

![Diagram of robot localization]

Prob

0 1

\(t=5\)
Inference: Find State Given Evidence

- We are given evidence at each time and want to know

\[B_t(X) = P(X_t|e_{1:t}) \]

- Idea: start with \(P(X_1) \) and derive \(B_t \) in terms of \(B_{t-1} \)
 - equivalently, derive \(B_{t+1} \) in terms of \(B_t \)
Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities:
 - \(P(\text{on time} \mid \text{no reported accidents}) = 0.90 \)
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - \(P(\text{on time} \mid \text{no accidents, 5 a.m.}) = 0.95 \)
 - \(P(\text{on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80 \)
 - Observing new evidence causes beliefs to be updated
Inference by Enumeration

- $P(W)$?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>W</td>
<td>P</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W)$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W) = P(sun) = 0.3 + 0.1 + 0.1 + 0.15 = 0.65$

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- P(W)?

\[
P(\text{sun}) = 0.3 + 0.1 + 0.1 + 0.15 = 0.65 \\
P(\text{rain}) = 1 - 0.65 = 0.35
\]

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- **General case:**
 - Evidence variables: $E_1 \ldots E_k = e_1 \ldots e_k$
 - Query* variable: Q
 - Hidden variables: $H_1 \ldots H_r$

\[
\{ X_1, X_2, \ldots X_n \}
\]

All variables

- **We want:**
 \[
P(Q|e_1 \ldots e_k)
 \]

* Works fine with multiple query variables, too

- **Step 1:** Select the entries consistent with the evidence

- **Step 2:** Sum out H to get joint of Query and evidence

- **Step 3:** Normalize

\[
1 \times \frac{1}{Z}
\]

\[
Z = \sum_q P(Q, e_1 \ldots e_k)
\]

\[
P(Q|e_1 \ldots e_k) = \frac{1}{Z} P(Q, e_1 \ldots e_k)
\]

\[
P(Q,e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Q,h_1 \ldots h_r, e_1 \ldots e_k)
\]

\[
X_1, X_2, \ldots X_n
\]
Inference by Enumeration

\[P(W \mid \text{winter})? \]

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W | \text{winter})$?

\[
P(\text{sun}|\text{winter})^2 = 1 + 0.15 = 0.25
\]
Inference by Enumeration

- $P(W \mid \text{winter})$?

\[
P(\text{rain}\mid\text{winter}) \approx .05 + .2 = .25
\]

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- \(P(W \mid \text{winter})? \)

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>

\(P(\text{sun} \mid \text{winter}) \approx 0.25 \)
\(P(\text{rain} \mid \text{winter}) \approx 0.25 \)
\(P(\text{sun} \mid \text{winter}) = 0.5 \)
\(P(\text{rain} \mid \text{winter}) = 0.5 \)
Inference by Enumeration

- $P(W \mid \text{winter, hot})$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W \mid \text{winter, hot})$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W \mid winter, hot)$?

 - $P(sun|winter,hot) \sim 0.1$
 - $P(rain|winter,hot) \sim 0.05$

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W \mid \text{winter, hot})$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>

$P(\text{sun} \mid \text{winter, hot}) \sim 0.1$

$P(\text{rain} \mid \text{winter, hot}) \sim 0.05$

$P(\text{sun} \mid \text{winter, hot}) = 2/3$

$P(\text{rain} \mid \text{winter, hot}) = 1/3$
Inference by Enumeration

- **Obvious problems:**
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
Next Topic

- Inference in HMMs