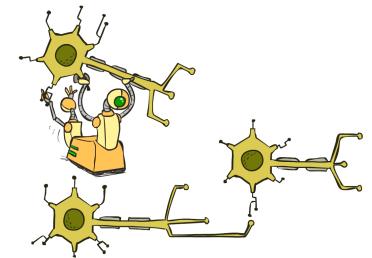
CSE 573 PMP: Artificial Intelligence

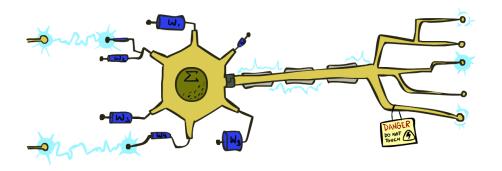
Hanna Hajishirzi Neural Networks and Applications

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer



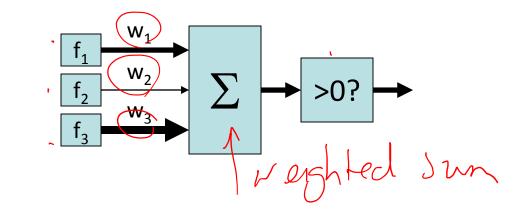
Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

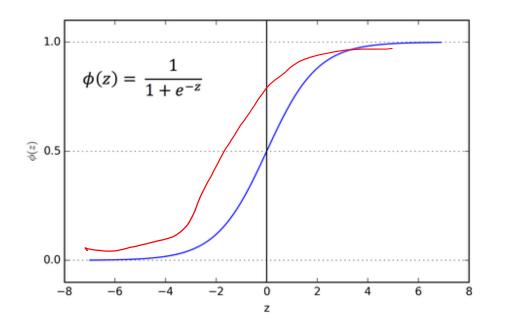


How to get probabilistic decisions?

- Activation: $z = w \cdot f(x)$
- If z = w ⋅ f(x) very positive → want probability going to 1
 If z = w ⋅ f(x) very negative → want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$



Best w?

Maximum likelihood estimation:

$$P(y,z;w) = P(y|x;w)$$

 $P(y|w)$

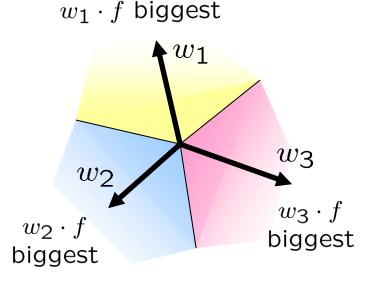
$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$
$$P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$
$$= \text{Logistic Regression}$$

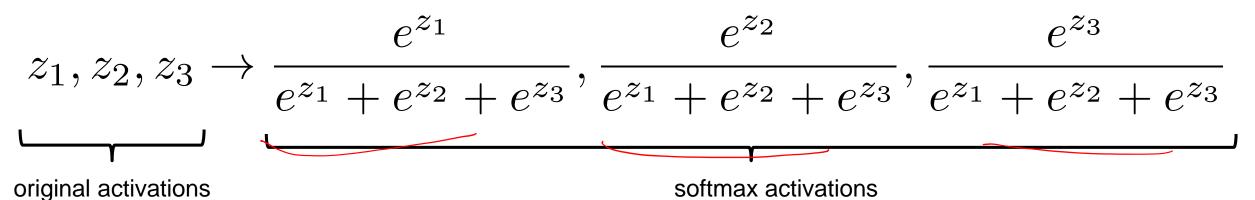
Multiclass Logistic Regression

- Multi-class linear classification
 - A weight vector for each class:
 - Score (activation) of a class y: $w_{y} \cdot f(x)$
 - Prediction w/highest score wins: $y = \arg \max w_y \cdot f(x)$

 w_{u}



How to make the scores into probabilities?



Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Optimization

- Optimization
 - i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Hill Climbing

simple, general idea

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

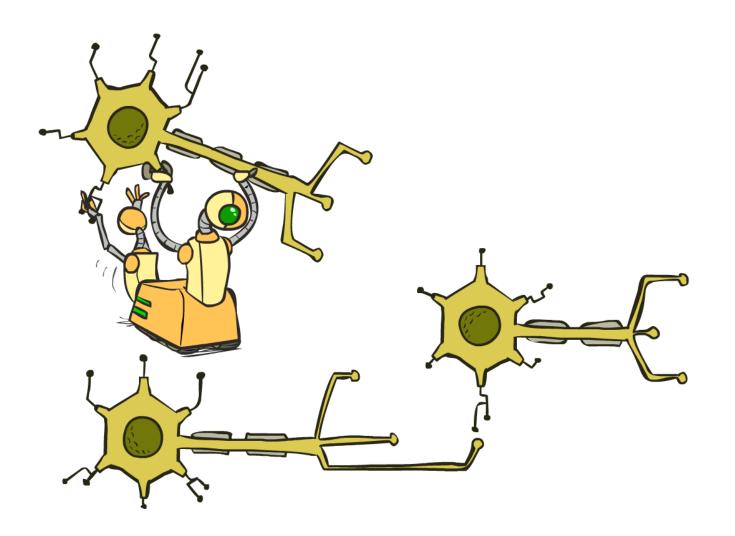
• init
$$w$$

• for iter = 1, 2, ...
• pick random subset of training examples J
 $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$

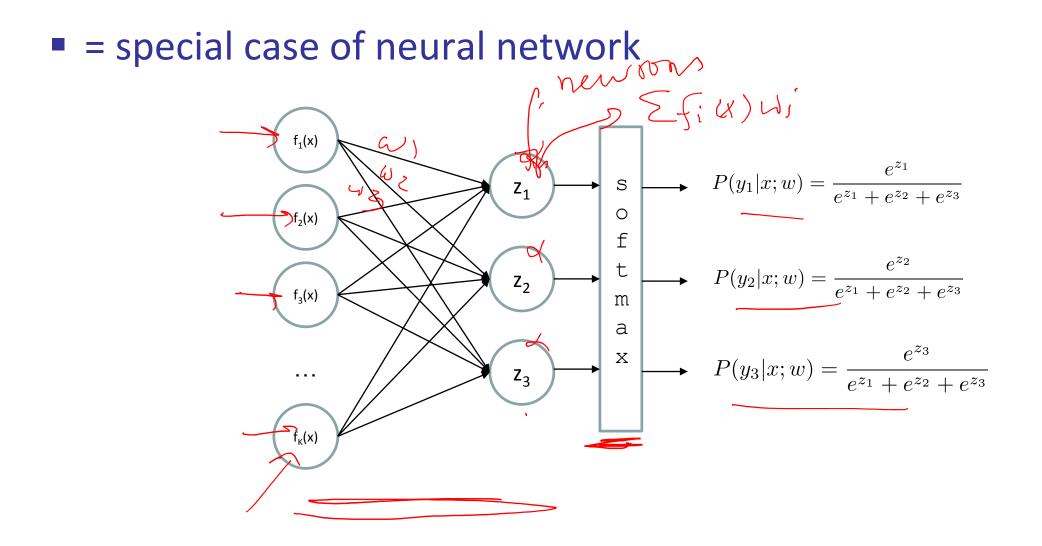
How about computing all the derivatives?

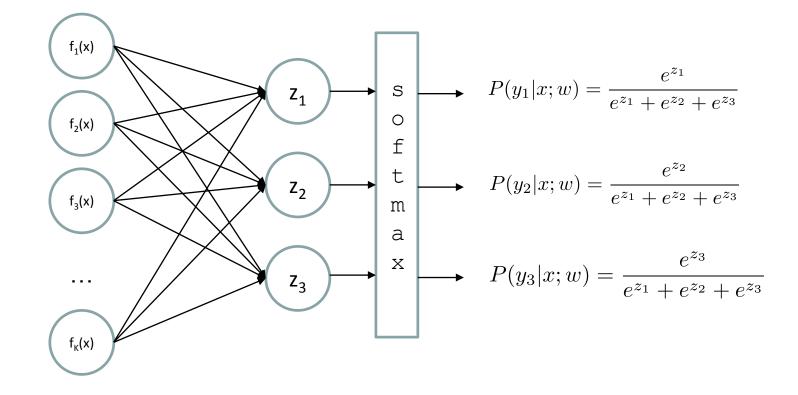
 We'll talk about that once we covered neural networks, which are a generalization of logistic regression

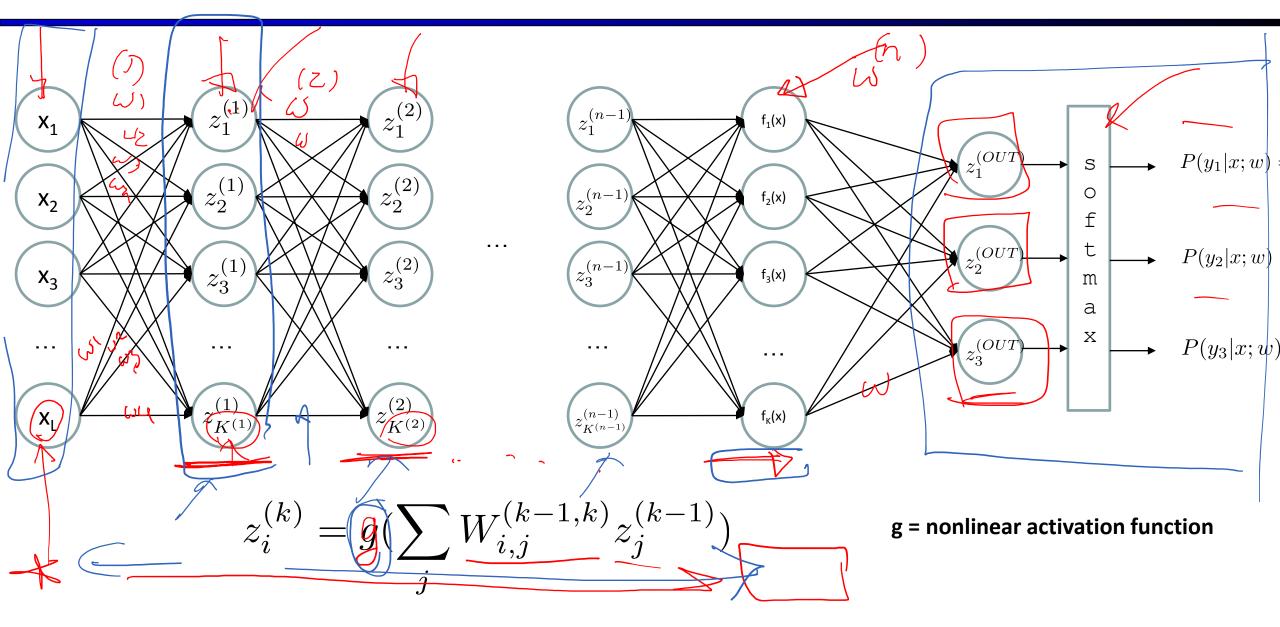
Neural Networks

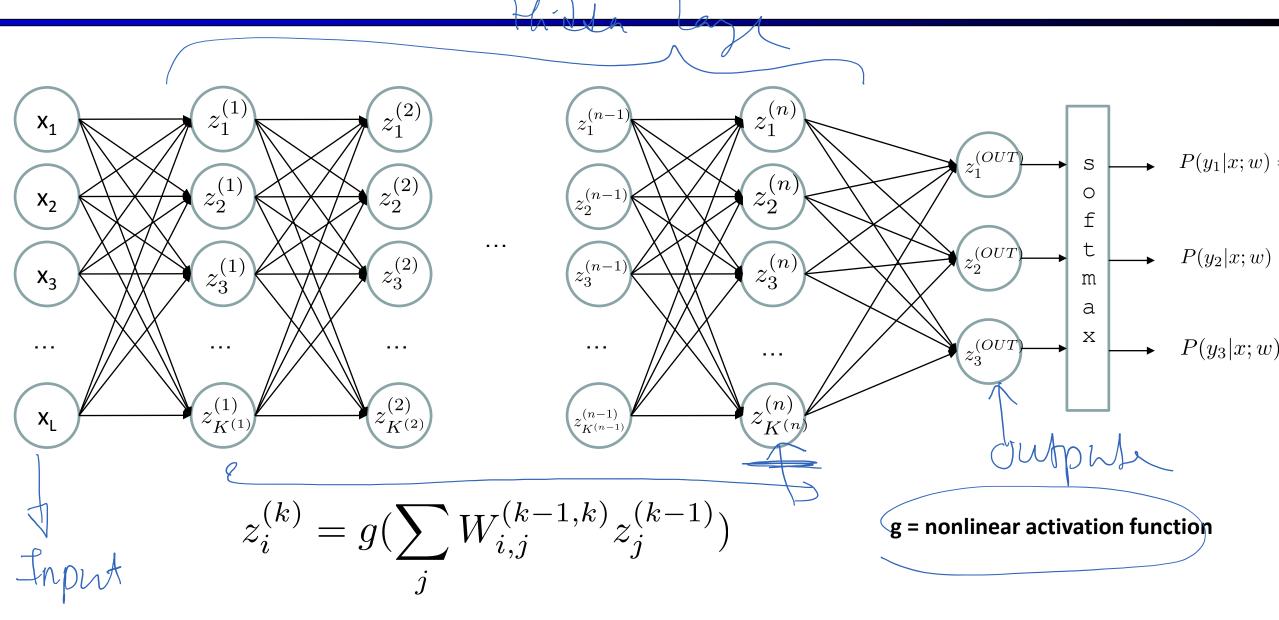


Multi-class Logistic Regression

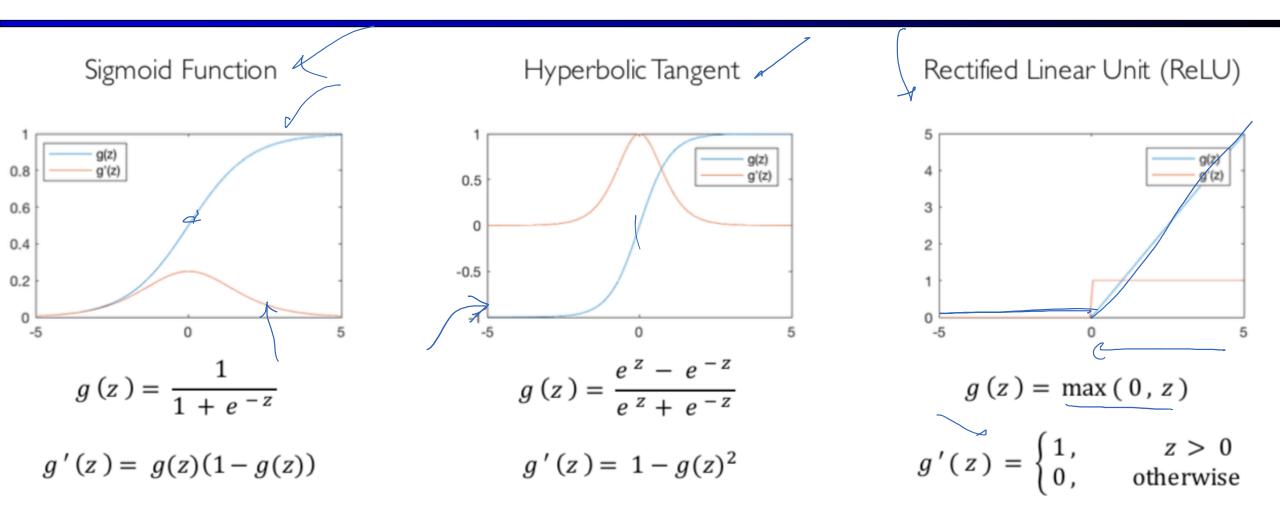








Common Activation Functions



Training the deep neural network is just like logistic regression:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

just w tends to be a much, much larger vector 🙂

 \rightarrow just run gradient ascent

+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

Fun Neural Net Demo Site

- Demo-site:
 - http://playground.tensorflow.org/

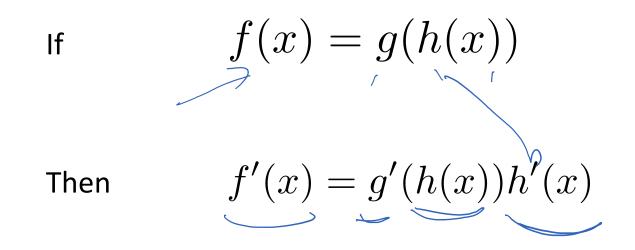
How about computing all the derivatives?

Derivatives tables:

 $\frac{d}{dx}(a) = 0$ $\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$ $\frac{d}{dx}(x) = 1$ $\frac{d}{dx} \left[\log_a u \right] = \log_a e \frac{1}{u} \frac{du}{dx}$ $\frac{d}{dx}(au) = a\frac{du}{dx} \qquad \qquad \frac{d}{dx}e^u = e^u\frac{du}{dx}$ $\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx} \qquad \qquad \frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \qquad \frac{d}{dx}\left(u^{v}\right) = vu^{v-1}\frac{du}{dx} + \ln u \quad u^{v}\frac{dv}{dx}$ $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx} \qquad \qquad \frac{d}{dx}\sin u = \cos u\frac{du}{dx}$ $\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\cos u = -\sin u\frac{du}{dx}$ $\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\tan u = \sec^2 u\frac{du}{dx}$ $\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u^n}\right) = -\frac{n}{u^{n+1}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$ $\frac{d}{dx}\csc u = -\csc u\cot u\frac{du}{dx}$ $\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx}$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:



 \rightarrow Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
- Need to know this exists
- How this is done? -- outside of scope of CSE573

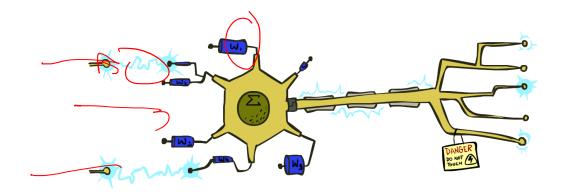
Summary of Key Ideas

 $\max_{w} \quad ll(w) = \max_{w} \quad \sum \log P(y^{(i)}|x^{(i)};w)$

- Optimize probability of label given input
- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - → the features are learned rather than hand-designed
 - Universal function approximation theorem
 - If neural net is large enough
 - Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 - But remember: need to avoid overfitting / memorizing the training data \rightarrow early stopping!
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

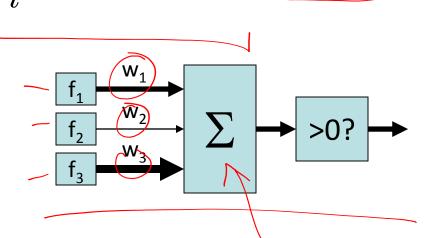
Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



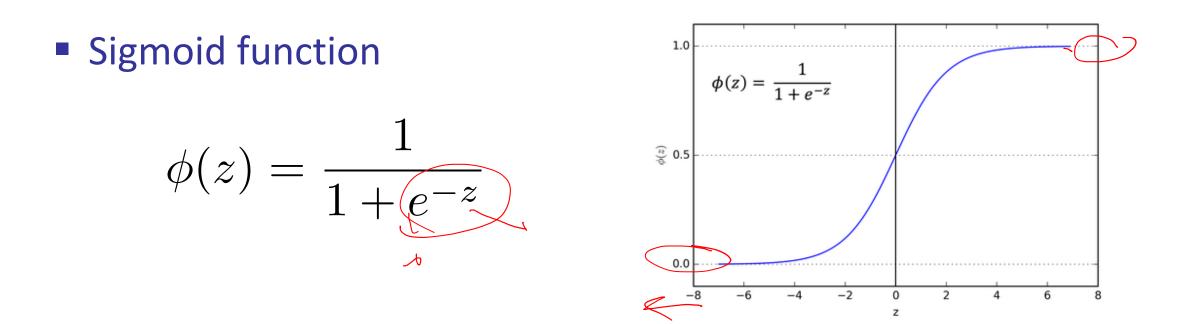
activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1



How to get probabilistic decisions?

- Activation: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0



Best w?

- Maximum likelihood estimation: $L(w) = \prod P(y|x; w)$ $\Sigma (wy = \sum wy = 1$
 - $\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$

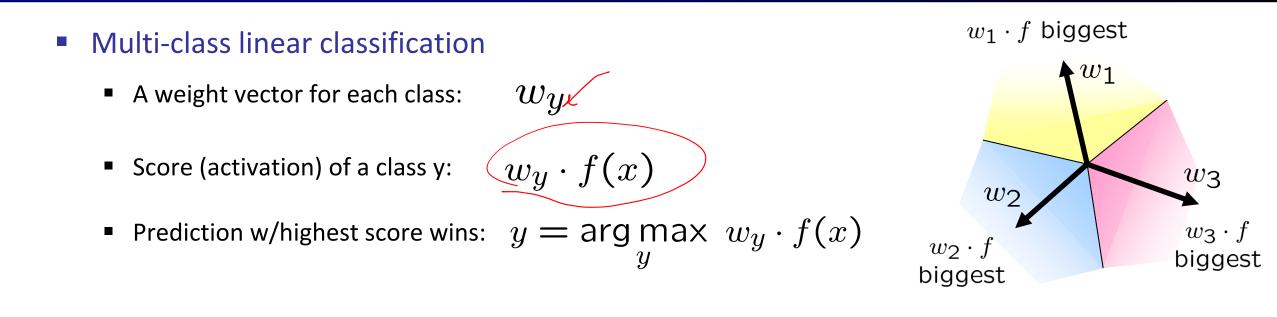
with:

$$P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

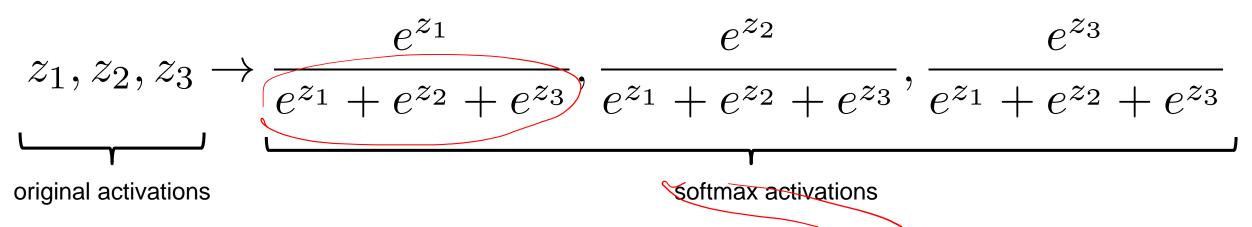
$$P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Multiclass Logistic Regression



How to make the scores into probabilities?



Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$
with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Optimization

- Optimization
 - i.e., how do we solve:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

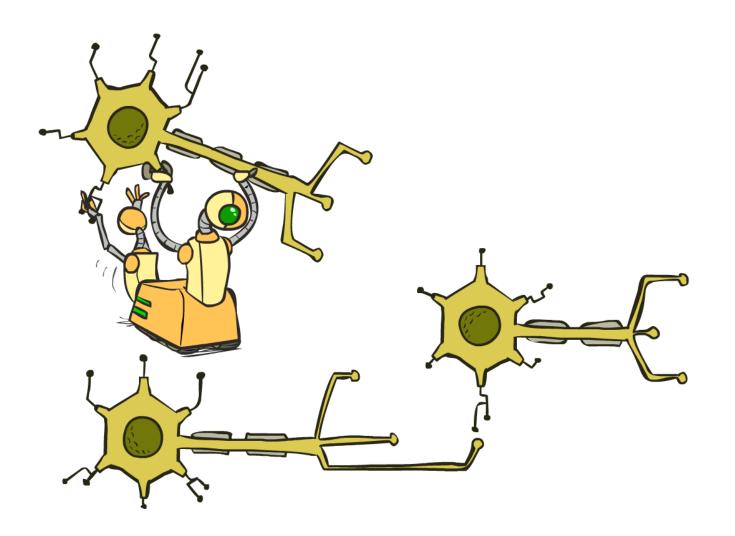
$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

• init
$$w$$

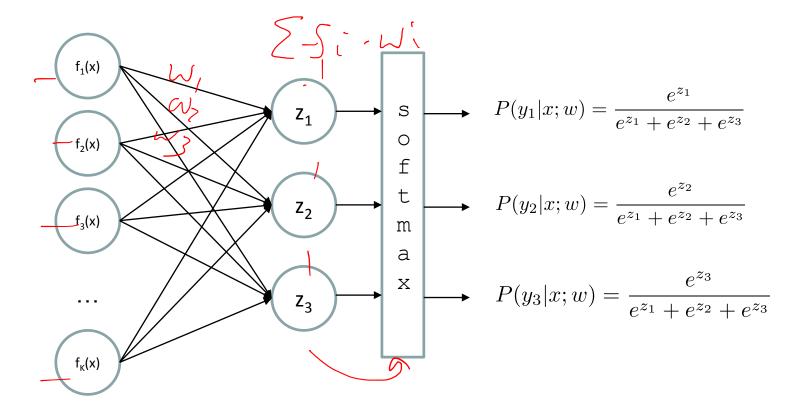
• for iter = 1, 2, ...
• pick random subset of training examples J
 $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$
 \mathcal{U}

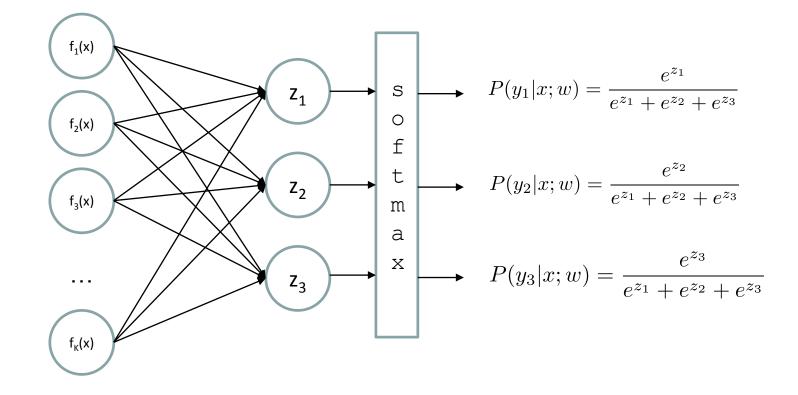
Neural Networks

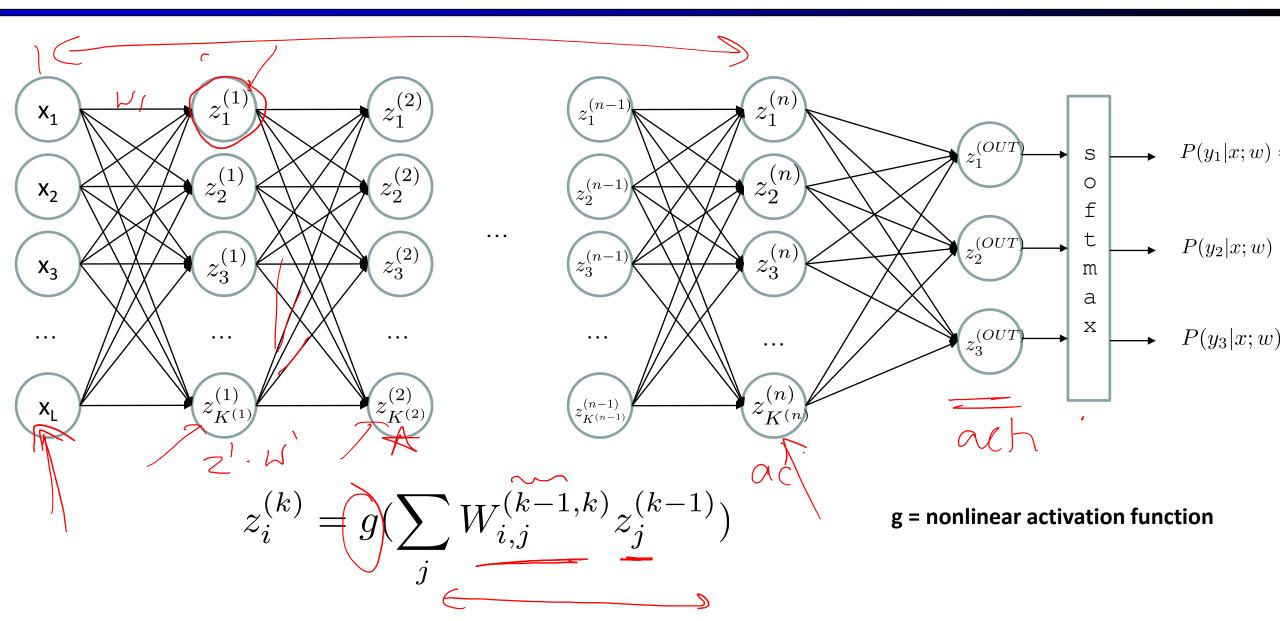


Multi-class Logistic Regression

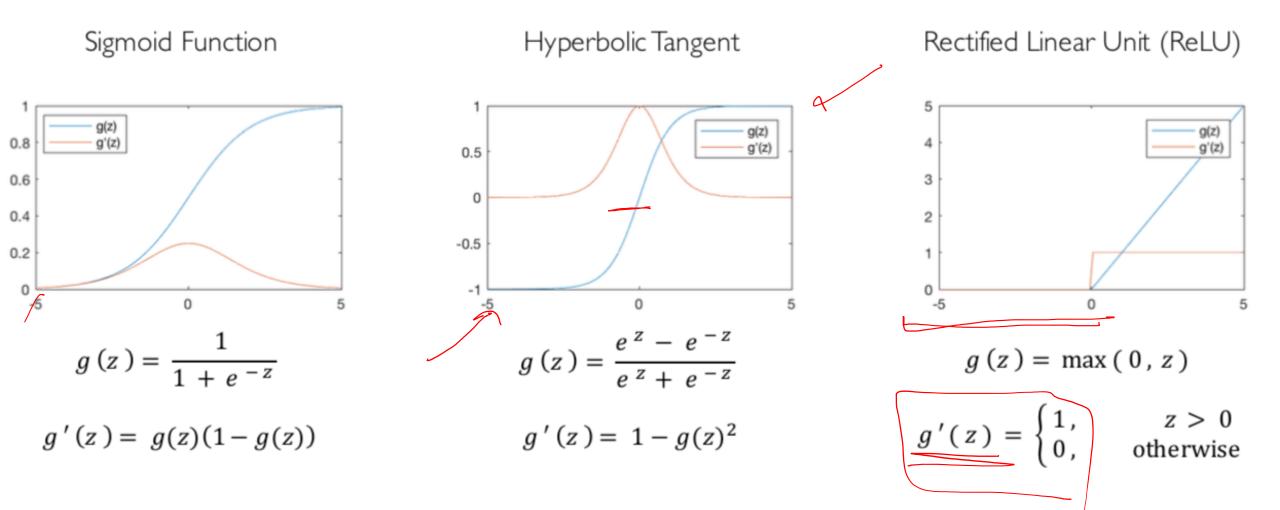
= special case of neural network







Common Activation Functions



[source: MIT 6.S191 introtodeeplearning.com]

Training the deep neural network is just like logistic regression:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

just w tends to be a much, much larger vector 🙂

- \rightarrow just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

Fun Neural Net Demo Site

- Demo-site:
 - http://playground.tensorflow.org/

How about computing all the derivatives?

Derivatives tables:

 $\frac{d}{dx}(a) = 0$ $\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$ $\frac{d}{dx}(x) = 1$ $\frac{d}{dx} \left[\log_a u \right] = \log_a e \frac{1}{u} \frac{du}{dx}$ $\frac{d}{dx}(au) = a\frac{du}{dx} \qquad \qquad \frac{d}{dx}e^u = e^u\frac{du}{dx}$ $\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx} \qquad \qquad \frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \qquad \frac{d}{dx}\left(u^{v}\right) = vu^{v-1}\frac{du}{dx} + \ln u \quad u^{v}\frac{dv}{dx}$ $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx} \qquad \qquad \frac{d}{dx}\sin u = \cos u\frac{du}{dx}$ $\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\cos u = -\sin u\frac{du}{dx}$ $\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\tan u = \sec^2 u\frac{du}{dx}$ $\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u^n}\right) = -\frac{n}{u^{n+1}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$ $\frac{d}{dx}\csc u = -\csc u\cot u\frac{du}{dx}$ $\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx}$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then $f'(x) = g'(h(x))h'(x)$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
- Need to know this exists
- How this is done? -- outside of scope of CSE573

Summary of Key Ideas

- Optimize probability of label given input
- put $\max_{w} ll(w) = \max_{w} \sum_{i}$

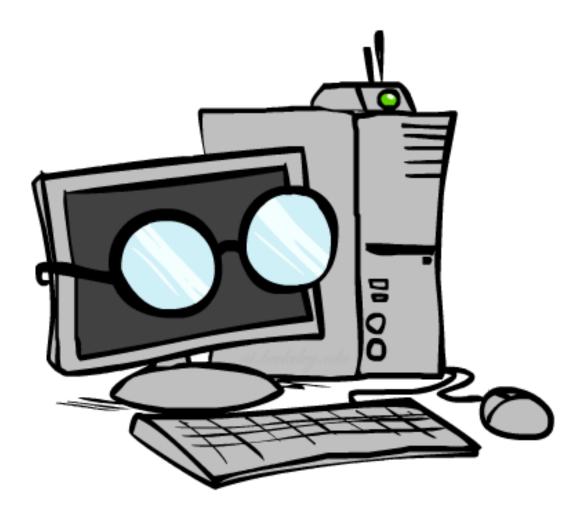
$$\max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - \rightarrow the features are learned rather than hand-designed
 - Universal function approximation theorem
 - If neural net is large enough
 - Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 - But remember: need to avoid overfitting / memorizing the training data \rightarrow early stopping!
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

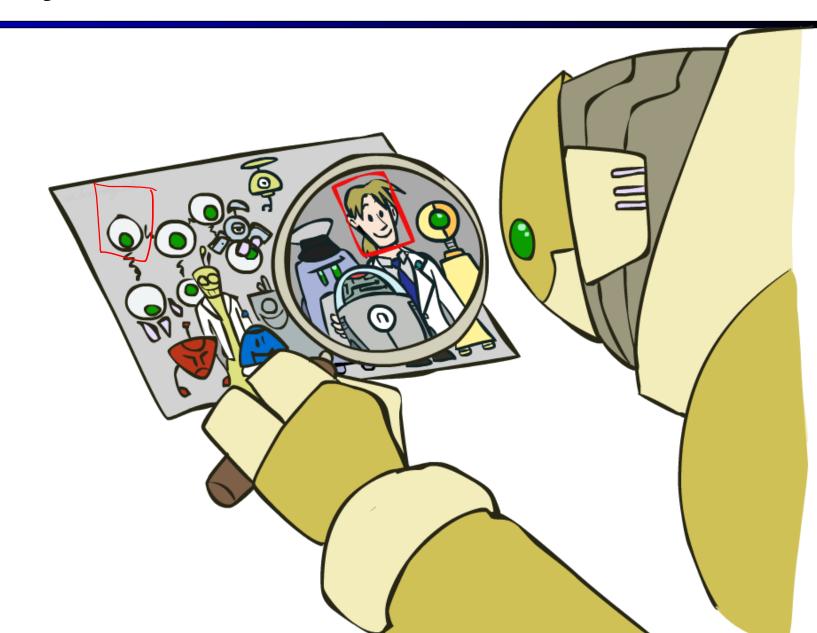
How well does it work?

Next: More Neural Net Applications!

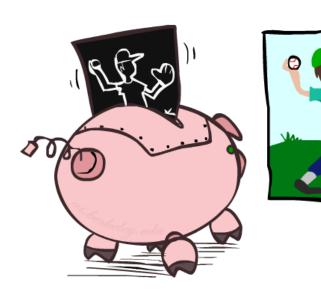
Computer Vision



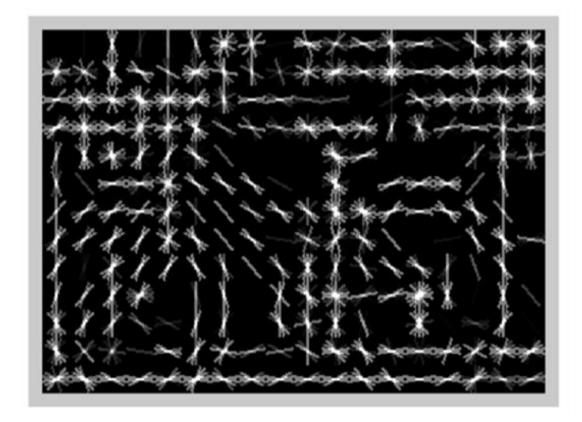
Object Detection



Manual Feature Design

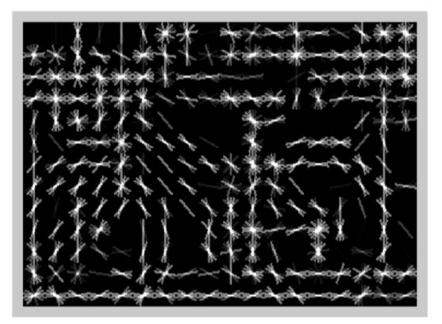


Features and Generalization



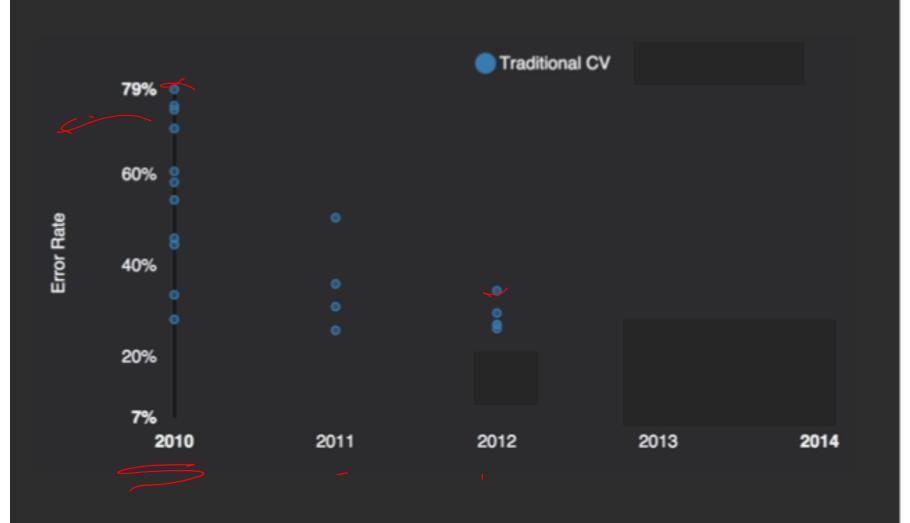
[HoG: Dalal and Triggs, 2005]

Features and Generalization

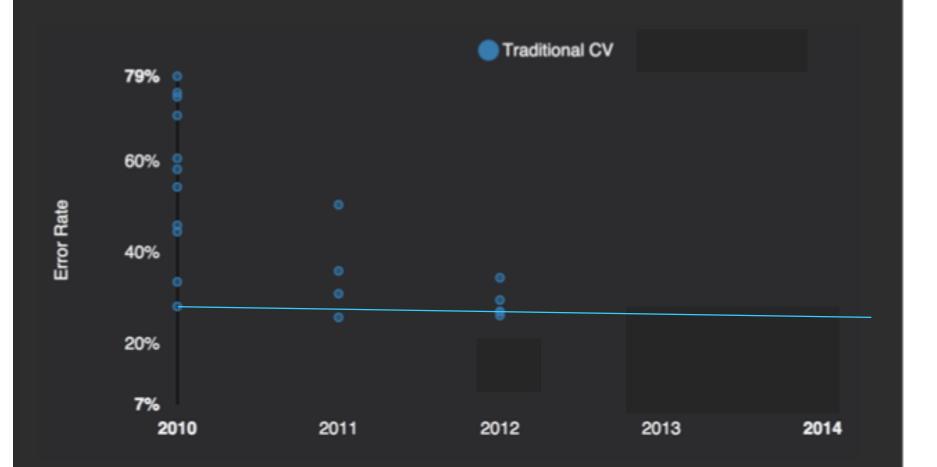


Image

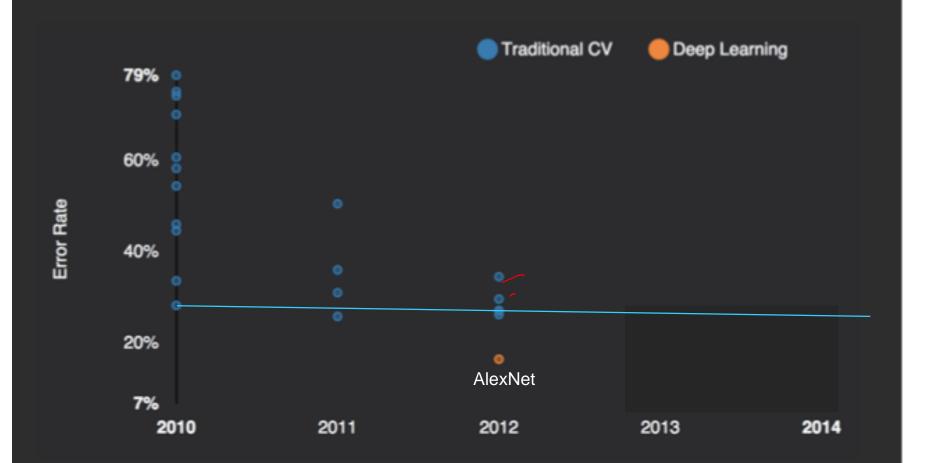
ImageNet Error Rate 2010-2014



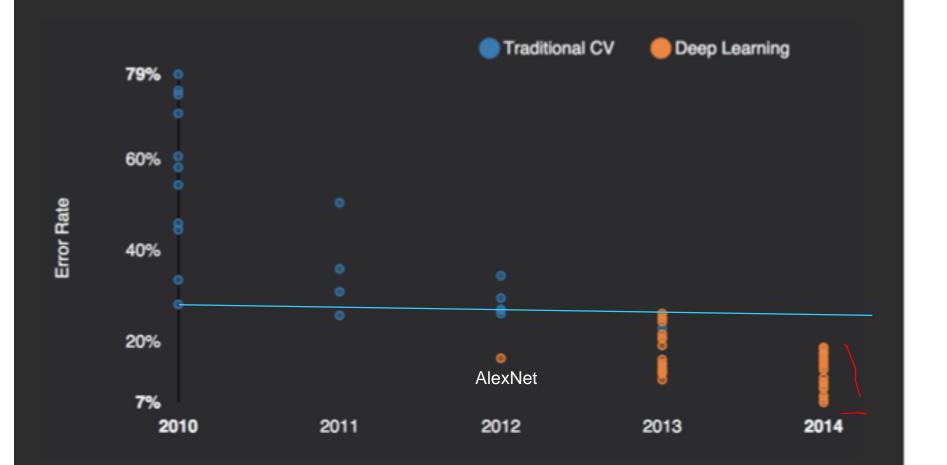
ImageNet Error Rate 2010-2014



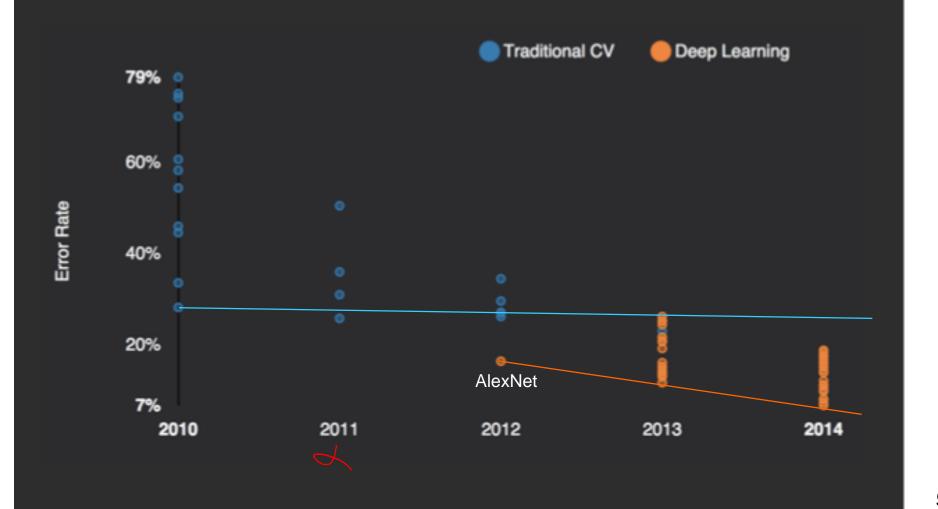
ImageNet Error Rate 2010-2014



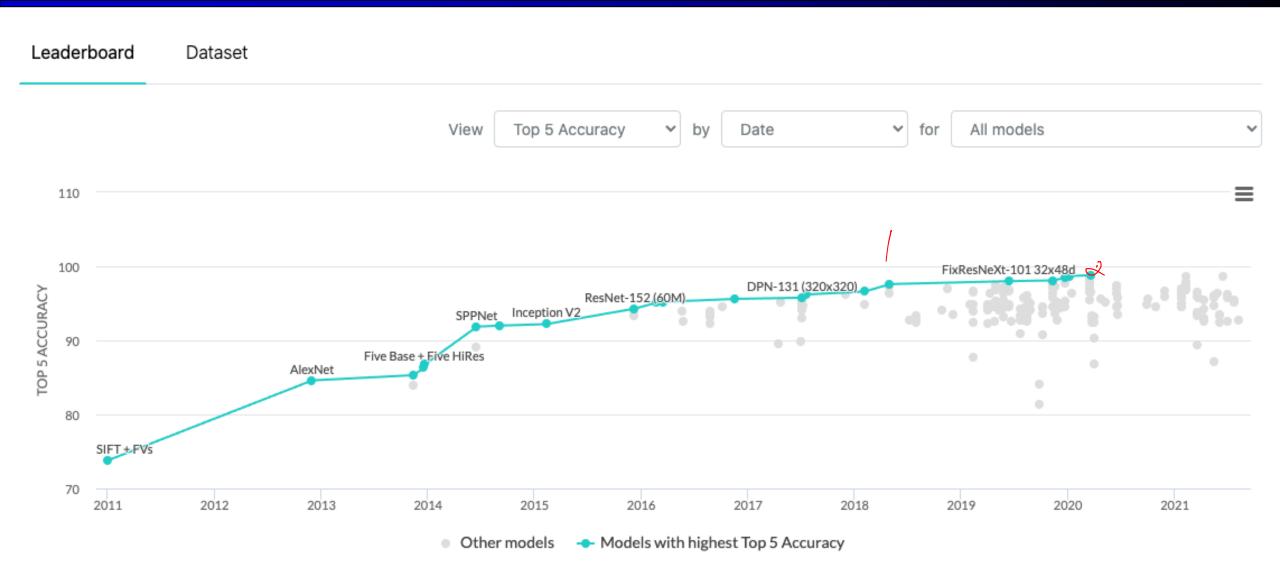
ImageNet Error Rate 2010-2014



ImageNet Error Rate 2010-2014



Papers With Code: ImageNet



MS COCO Image Captioning Challenge

man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

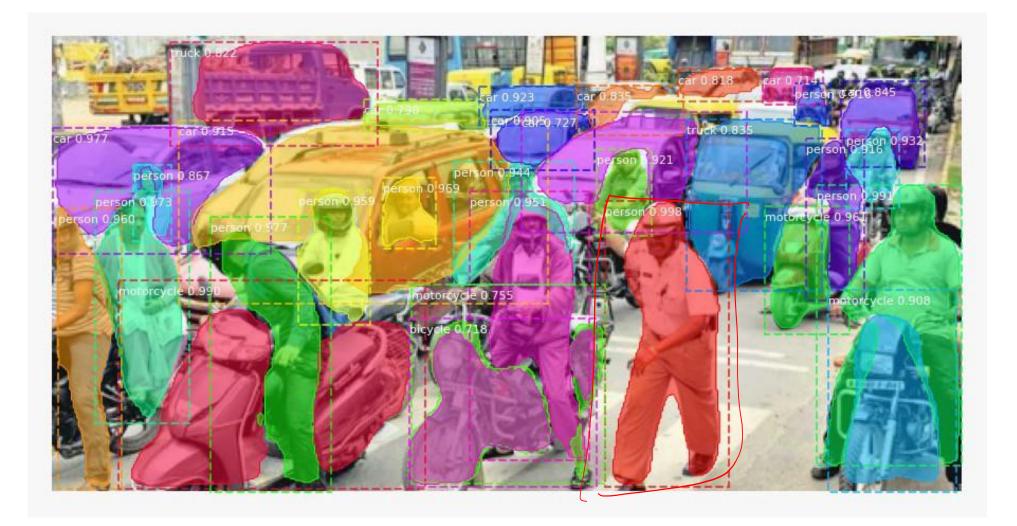
"man in blue wetsuit is surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

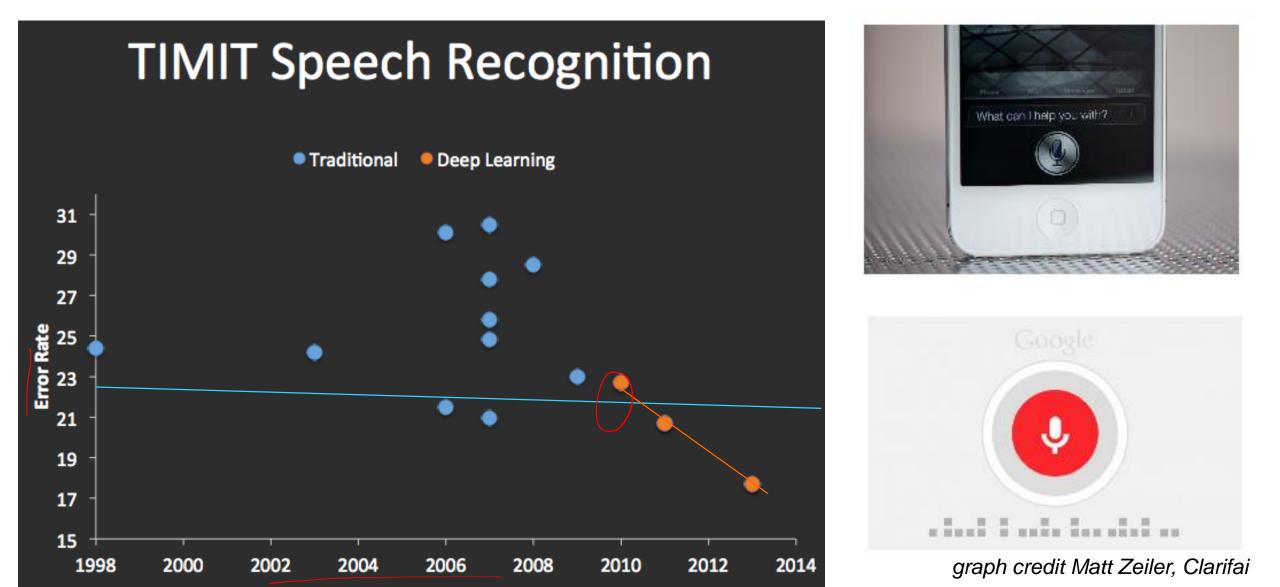
Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Image Segmentation



Speech Recognition

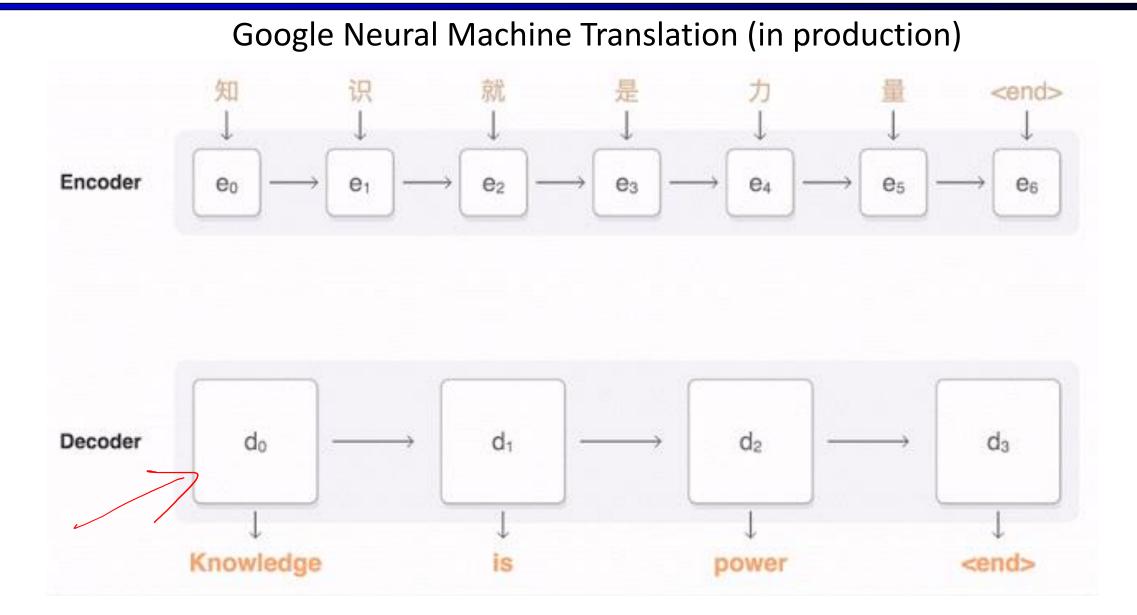


Question Answering

Super Bowl 48 was an American football game to determine the champion of the National Football League (NFL) for the 2013 season. The National Football Conference champions Seattle Seahawks defeated the American Football Conference champions Denver Broncos. The Seahawks defeated the Broncos 43—8, the largest margin victory for an underdog and tied the third largest point differential overall (35) in Super Bowl history with Super Bowl XXVII (1993). It was the first time the winning scored over 40 points, while holding their opponent to under 10.

Questio	Which NFL team represented the NFC at Super Bowl 48?		
n			
Answer	Seattle Seahawks		

Machine Translation



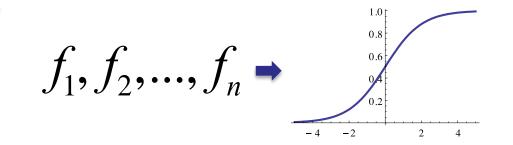
Pipeline Approach for Question Answering

- Feature engineering
- Classifying phrases

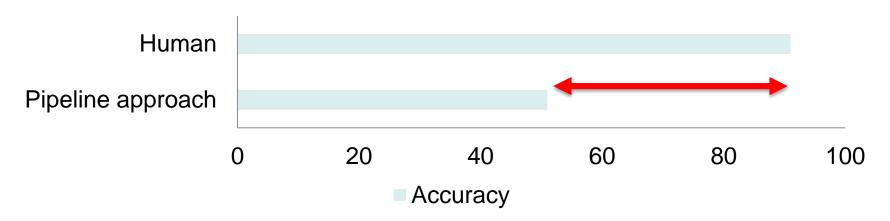
Super Bowl 48 was an American football game to determine the champion of the National Football League (NFL) for the 2013 season. The National Football Conference champions Seattle Seahawks defeated the American Football Conference champions Denver Broncos. The Seahawks defeated the Broncos 43—8, the largest margin victory for an underdog and tied the third largest point differential overall (35) in Super Bowl history with Super Bowl XXVII (1993). It was the first time the winning scored over 40 points, while holding their opponent to under 10.

Which NFL team represented the NFC at Super Bowl 48?

words, types, frequencies dependency relations



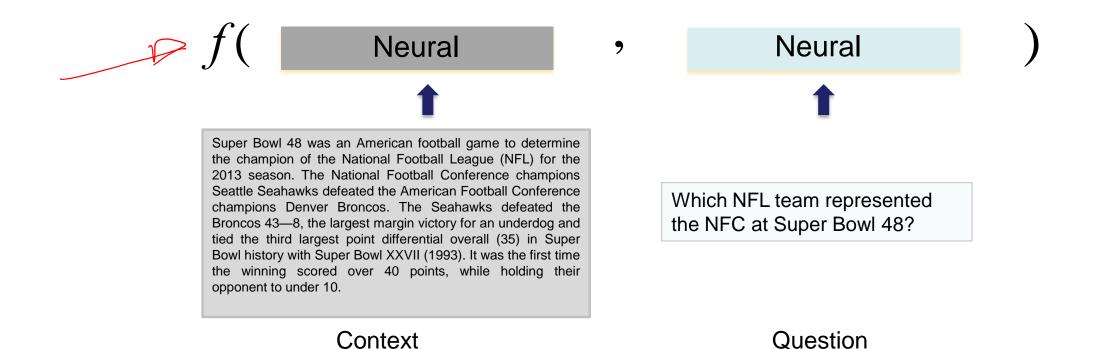
Pipeline Approach Results

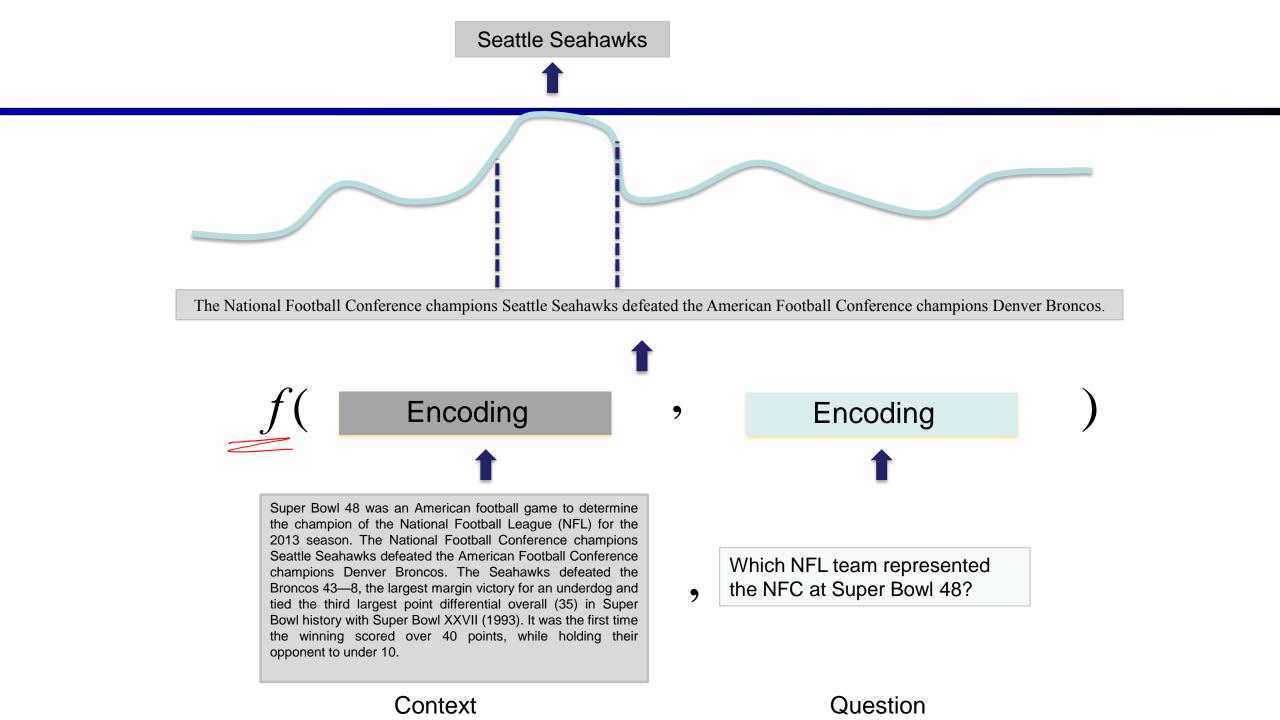


- Dataset: Stanford Question Answering Dataset (SQuAD) [Rajpurkar et al 2016]:
 - 100k Wikipedia documents with question
- Accuracy: percentage of correctly predicted phrases

Neural Approach [ICLR'17]

Find a function that assigns a high score to the the correct answer given the context and question





Question Answering Leaderboard

Jan 1, 2017

Test Set Leaderboard

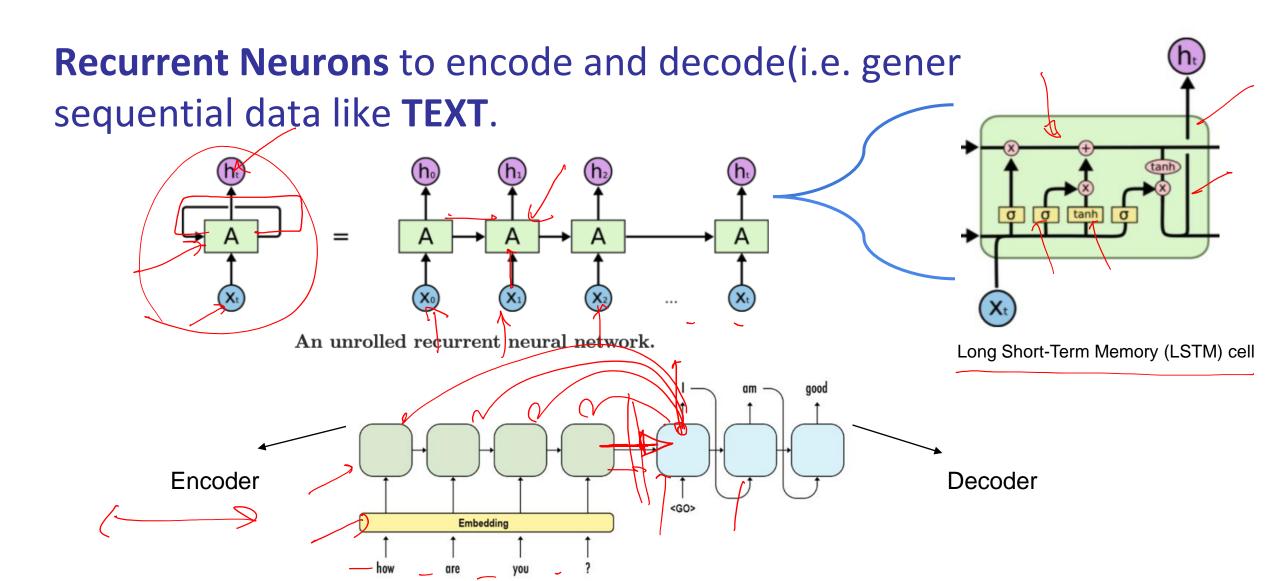
Since the release of our dataset (and paper), the community has made rapid progress! Here are the ExactMatch (EM) and F1 scores of the best models evaluated on the test and development sets of v1.1.

Rank	Model	Test EM	Test F1
1	BiDAF (ensemble) Allen Institute for AI & University of Washington (Seo et al. '16)	73.3	81.1
2	Dynamic Coattention Networks (ensemble) Salesforce Research (Xiong & Zhong et al. '16)	71.6	80.4
2	r-net (ensemble) Microsoft Research Asia	72.1	79.7
4	r-net (single model) Microsoft Research Asia	68.4	77.5
5	BiDAF (single model) Allen Institute for AI & University of Washington (Seo et al. '16)	68.0	77.3
5	Multi-Perspective Matching (ensemble) IBM Research	68.2	77.2

March 8, 2021 📈

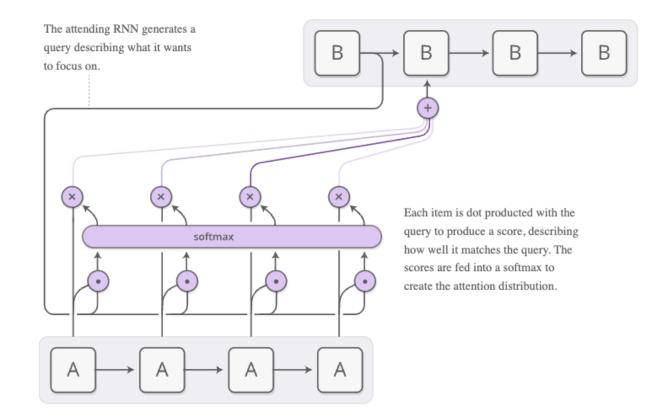
Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Feb 21, 2021	FPNet (ensemble) Ant Service Intelligence Team	90.871	93.183
2 Feb 24, 2021	IE-Net (ensemble) RICOH_SRCB_DML	90.758	93.044
3 Apr 06, 2020	SA-Net on Albert (ensemble) QIANXIN	90.724	93.011
4 May 05, 2020	SA-Net-V2 (ensemble) QIANXIN	90.679	92.948
4 Apr 05, 2020	Retro-Reader (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.578	92.978
4 Feb 05, 2021	FPNet (ensemble) YuYang	90.600	92.899
5 Dec 01, 2020	EntitySpanFocusV2 (ensemble) RICOH_SRCB_DML	90.521	92.824
5 Jul 31, 2020	ATRLP+PV (ensemble) Hithink RoyalFlush	90.442	92.877
5 May 04, 2020	ELECTRA+ALBERT+EntitySpanFocus (ensemble) SRCB_DML	90.442	92.839

Neural Networks for Natural Language Processing



Attending to Input

Attention helps resolve the **Vanishing Gradient Problem** that recurrent neural networks suffer over LONG SEQUENCES. At any time step, the model can decide which tokens to pay attention to from other time-steps.

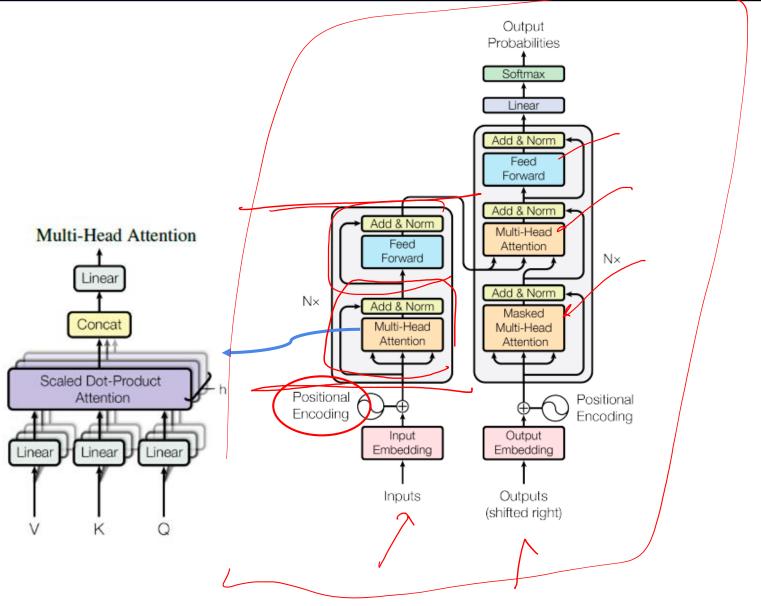


Attention is all you need!

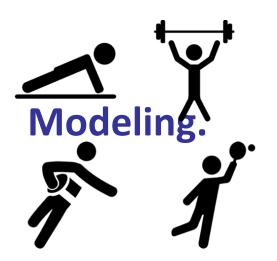
Turns out you only need attention, and can get rid of the recurrent neurons entirely!

Transformers : Interleaving attention layers and fully-connected layers, which can be computed **parallely** over the sequence, instead of recurrently.

Positional Embeddings : Encode Sequence Information



Pretrain-then-finetune paradigm



Pre-train transformer on Masked Language

Finetune transformer on task-specific data and

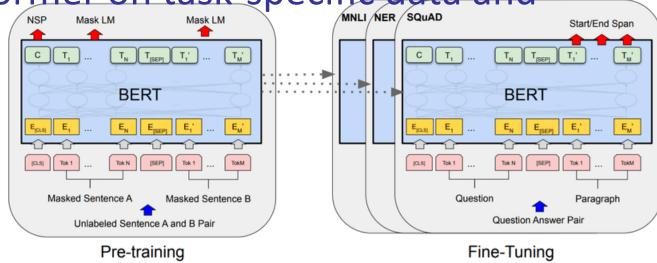
 Iabels.

 Randomly masked

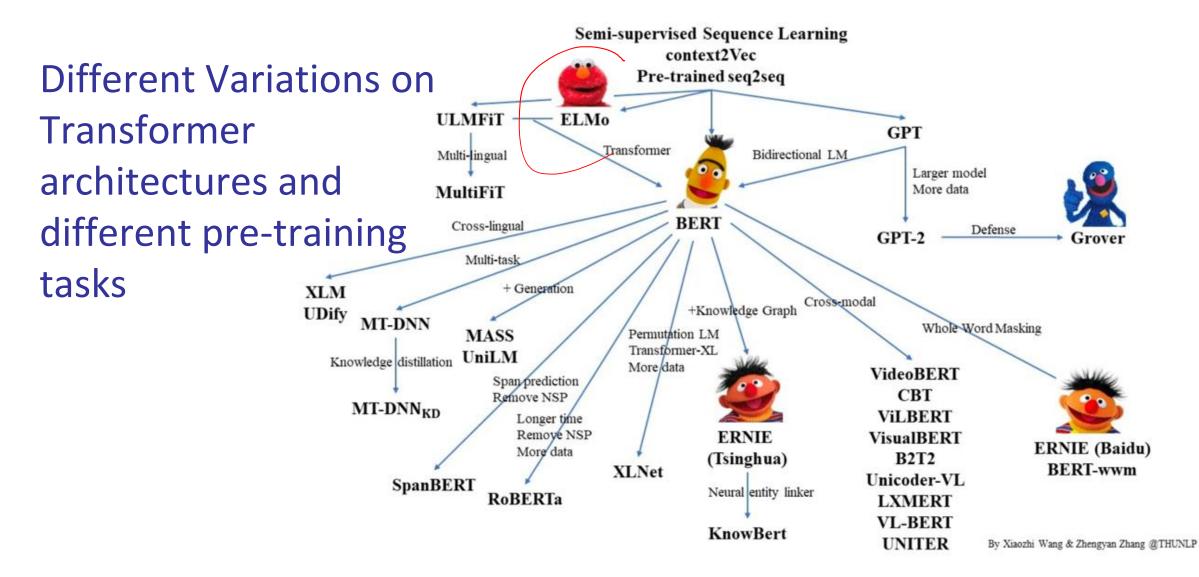
 A quick [MASK] fox jumps over the [MASK] dog

 Image: Construction of the state of t

Predict A quick brown fox jumps over the lazy dog



BERT and Family



NLP Tasks and Benchmarks

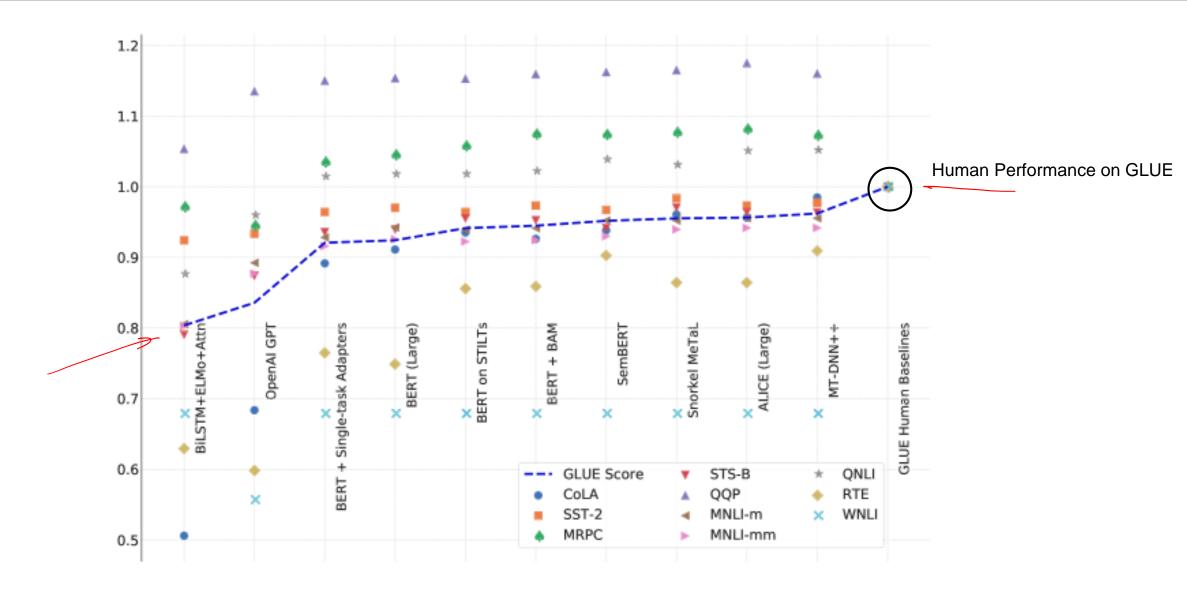
& Language **Understanding** tasks

- ✗ GLUE/SuperGLUE Benchmarks
- ℜ Natural Language Entailment, Paraphrase detection, Sentiment/review classification
- **Question Answering**, Reading Comprehension

& Language Generating tasks

- ✗ Machine Translation
- ✗ Long-text summarization
- Dialogue Systems: Interactive systems that have to understand humans and generate responses

Pretrained Models (BERT) on GLUE Benchmarks



Massive Pre-trained models are few-shot learners!



Figure 1: Exponential growth of number of parameters in DL models

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar^{*}, Jeremy Irvin^{*}, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew Y. Ng

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists.

Chest X-rays are currently the best available method for diagnosing pneumonia, playing a crucial role in clinical care and epidemiological studies. Pneumonia is responsible for more than 1 million hospitalizations and 50,000 deaths per year in the US alone.

READ OUR PAPER

Google and DeepMind are using AI to predict the energy output of wind farms

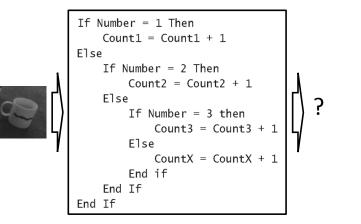
To help make that energy more valuable to the power grid

By Nick Statt | @nickstatt | Feb 26, 2019, 2:42pm EST

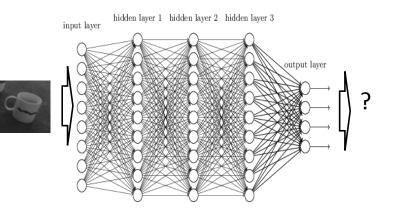
Google <u>announced today</u> that it has made energy produced by wind farms more viable using the artificial intelligence software of its London-based subsidiary DeepMind. By using DeepMind's machine learning algorithms to predict the wind output from the farms Google uses for its green energy initiatives, the company says it can now schedule set deliveries of energy output, which are more valuable to the grid than standard, non-time-based deliveries.

Change in Programming Paradigm!

Traditional Programming: program by writing lines of code



Deep Learning ("Software 2.0"): program by providing data



Poor performance on AI problems

Success!