CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi
Perceptrons and Logistic Regression

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer
Announcements

- Project proposals: Graded
- HW2 released - Deadline: March 6th
- PS4 released - Deadline: March 11th
- Instructions for Project Presentations - New deadline: March 17th
- Project Report - New deadline: March 20th
Last Lecture

- Classification: given inputs x, predict labels (classes) y

- Naïve Bayes

$$P(Y \mid F_0, 0 \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j} \mid Y)$$

- Parameter estimation:
 - MLE, MAP, priors
 - $P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}$

- Laplace smoothing
 - $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$

- Training set, held-out set, test set
Workflow

- **Phase 1: Train model on Training Data. Choice points for “tuning”**
 - Attributes / Features
 - Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
 - Model hyperparameters
 - E.g. Naïve Bayes – Laplace k
 - E.g. Logistic Regression – weight regularization
 - E.g. Neural Net – architecture, learning rate, ...
 - Make sure good performance on training data (why?)

- **Phase 2: Evaluate on Hold-Out Data**
 - If Hold-Out performance is close to Train performance
 - We achieved good generalization, onto Phase 3! 😊
 - If Hold-Out performance is much worse than Train performance
 - We overfitted to the training data! 😞
 - Take inspiration from the errors and:
 - Either: go back to Phase 1 for tuning (typically: make the model less expressive)
 - Or: if we are out of options for tuning while maintaining high train accuracy, collect more data (i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

- **Phase 3: Report performance on Test Data**

Possible outer-loop: Collect more data 😊
Practical Tip: Baselines

- **First step: get a baseline**
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is

- **Weak baseline: most frequent label classifier**
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

- For real research, usually use previous work as a (strong) baseline
Linear Classifiers
Feature Vectors

\[x \rightarrow f(x) \rightarrow y \]

Hello,

Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

\[
\begin{align*}
\# \text{ free} & : 2 \\
\text{YOUR_NAME} & : 0 \\
\text{MISSPELLED} & : 2 \\
\text{FROM_FRIEND} & : 0 \\
\ldots
\end{align*}
\]

SPAM or

[+]

\[
\begin{align*}
\text{PIXEL-7,12} & : 1 \\
\text{PIXEL-7,13} & : 0 \\
\ldots
\text{NUM_LOOPS} & : 1 \\
\ldots
\end{align*}
\]

“2”
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

\[\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x) \]

- If the activation is:
 - Positive, output +1
 - Negative, output -1
Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

\[\mathbf{w} \cdot \mathbf{f} \] positive means the positive class
Decision Rules
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

\[
\begin{align*}
 &BIAS : -3 \\
 &free : 4 \\
 &money : 2 \\
 &\ldots
\end{align*}
\]
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

w

<table>
<thead>
<tr>
<th>free</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>money</td>
<td>2</td>
</tr>
</tbody>
</table>
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

w

<table>
<thead>
<tr>
<th>BIAS</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

$-1 = \text{HAM}$

$f \cdot w = 0$

$+1 = \text{SPAM}$
Weight Updates
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - If correct (i.e., $y=y^*$), no change!
 - If wrong: adjust the weight vector
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

 \[
 y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases}
 \]
 - If correct (i.e., y=y*), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

\[
w = w + y^* \cdot f
\]
Examples: Perceptron

- Separable Case
If we have multiple classes:
 - A weight vector for each class: w_y
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction highest score wins

$y = \arg \max_y w_y \cdot f(x)$

Binary = multiclass where the negative class has weight zero
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \text{arg max}_y \ w_y \cdot f(x) \]

 - If correct, no change!

 - If wrong: lower score of wrong answer, raise score of right answer

\[w_y = w_y - f(x) \]

\[w_{y^*} = w_{y^*} + f(x) \]
Example: Multiclass Perceptron

“win the vote” [1 1 0 1 1]
“win the election” [1 1 0 0 1]
“win the game” [1 1 1 0 1]
Properties of Perceptrons

- **Separability**: true if some parameters get the training set perfectly correct.

- **Convergence**: if the training is separable, perceptron will eventually converge (binary case).

- **Non-separable?**
Problems with the Perceptron

- Noise: if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Improving the Perceptron
Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
Non-Separable Case: Probabilistic Decision
How to get probabilistic decisions?

- **Perceptron scoring:** \(z = w \cdot f(x) \)
- **If** \(z = w \cdot f(x) \) very positive \(\rightarrow \) want probability going to 1
- **If** \(z = w \cdot f(x) \) very negative \(\rightarrow \) want probability going to 0

- **Sigmoid function**

\[
\phi(z) = \frac{1}{1 + e^{-z}}
\]
A 1D Example

\[P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}} \]

probability increases exponentially as we move away from boundary

normalizer
The Soft Max

\[P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}} \]

looks like \(\max_y w_y \cdot x \)
Best w?

- Maximum likelihood estimation:

$$\max_w \; ll(w) = \max_w \sum_i \log P(y^{(i)} | x^{(i)}; w)$$

with:

$$P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression
Separable Case: Deterministic Decision – Many Options
Separable Case: Probabilistic Decision – Clear Preference

\[
\begin{array}{c|c}
0.7 & 0.3 \\
0.5 & 0.5 \\
0.3 & 0.7 \\
\end{array}
\]
Multiclass Logistic Regression

- Recall Perceptron:
 - A weight vector for each class: w_y
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction highest score wins $y = \arg \max_y w_y \cdot f(x)$

- How to make the scores into probabilities?

$$z_1, z_2, z_3 \rightarrow \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

original activations softmax activations
Best \(w \)?

- Maximum likelihood estimation:

\[
\max_w \quad ll(w) = \max_w \sum_i \log P(y^{(i)}|x^{(i)}; w)
\]

with:

\[
P(y^{(i)}|x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_y e^{w_{y} \cdot f(x^{(i)})}}
\]

= Multi-Class Logistic Regression
Best w?

- Optimization

- i.e., how do we solve:

\[
\max_w \ ll(w) = \max_w \ \sum_i \log P(y^{(i)} | x^{(i)}; w)
\]
Hill Climbing

- Simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What’s particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?
Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: \(g(w_1, w_2) \)

- Updates:
 \[
 w_1 \leftarrow w_1 + \alpha \frac{\partial g}{\partial w_1}(w_1, w_2) \\
 w_2 \leftarrow w_2 + \alpha \frac{\partial g}{\partial w_2}(w_1, w_2)
 \]

- Updates in vector notation:
 \[
 w \leftarrow w + \alpha \nabla_w g(w)
 \]
 with: \(\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix} \) = gradient
Gradient in n dimensions

$$\nabla g = \begin{bmatrix}
\frac{\partial g}{\partial w_1} \\
\frac{\partial g}{\partial w_2} \\
\vdots \\
\frac{\partial g}{\partial w_n}
\end{bmatrix}$$
Optimization Procedure: Gradient Ascent

- init \(w \)
- for \(\text{iter} = 1, 2, \ldots \)

\[
\text{iter} \quad \text{for iter = 1, 2, ...}
\]

\[
w \leftarrow w + \alpha \cdot \nabla g(w)
\]

- \(\alpha \): learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes \(w \) about 0.1 – 1 %
Batch Gradient Ascent on the Log Likelihood Objective

\[
\max_w \ ll(w) = \max_w \sum_i \log P(y^{(i)}|x^{(i)}; w)
\]

\[
g(w)
\]

- init \(w \)
- for iter = 1, 2, ...

\[
w \leftarrow w + \alpha \sum_i \nabla \log P(y^{(i)}|x^{(i)}; w)
\]
Stochastic Gradient Ascent on the Log Likelihood Objective

\[\max_w \ ll(w) = \max_w \sum_i \log P(y^{(i)}|x^{(i)}; w) \]

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- init \(w \)
- for iter = 1, 2, ...
 - pick random \(j \)

\[w \leftarrow w + \alpha \cdot \nabla \log P(y^{(j)}|x^{(j)}; w) \]
Mini-Batch Gradient Ascent on the Log Likelihood Objective

\[
\max_w ll(w) = \max_w \sum_i \log P(y^{(i)} \mid x^{(i)}; w)
\]

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- **init** \(w \)

- **for** iter = 1, 2, ...
 - **pick** random subset of training examples J
 \[
 w \leftarrow w + \alpha \sum_{j \in J} \nabla \log P(y^{(j)} \mid x^{(j)}; w)
 \]
How about computing all the derivatives?

- We’ll talk about that in neural networks, which are a generalization of logistic regression.