CSE 573 PMP:
Artificial Intelligence

Hanna Hajishirzi

Perceptrons and Logistic
Regression

Agent Testing
'Todau)!

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Announcements

Project proposals: Graded
HW?2 released -> Deadline: March 6th
PS4 released -> Deadline: March 11th

Instructions for Project Presentations -> New deadline:
March 17t

Project Report -> New deadline: March 20th

Last Lecture

= (Classification: given inputs x, Kw

predict labels (classes) y

iy

| Identify the Object:

= Nalve Bayes PG;L\\{ P(E\F/ . A; CDos
B ar

P) Alligator

P@|Fo,o ... F1515) P(Y)I[[P(Fi,ﬂ%)
— - &t
= Par ter estimation: e

: count(x)
- ,JMAP, priors P, x) =
j mL(@) total samples

= laplace smoothing _ Prapi(z) = ;(j_) :Xﬁ/

—= renbeni)e/

= Training set, held-out set, test set

Workflow

Phase 1: Train model on Training Data. Choice points for “tuning”

= Attributes / Features «—

L - .
= Model types: Naive Bayes vs. Perceptron vs. Logistic Regression vs. Neural'Net etc..

/-7 Model hyperparameters—

= E.g. Naive Bayes — Laplace k
= E.g. Logistic Regression — weight regularization

= E.g. Neural Net - architecture, learning rate, ...
= Make sure good performance on training data (why?)

Phase 2: Evaluate on Hold-Out Data=—

= If Hold-Out performance is close to Train performance
= We achieved good generalization, onto Phase 3! ©

» If Hold-Out performance is much worse than Train performance
= We overfitted to the training data! ®
= Take inspiration from the errors and:

= Either: go back to Phase 1 for tuning (typically: make the model less expressive)

= Or:if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data ©

S

\

SN

\<\
X =

Training
Data
N
Held-Out
= Data

&/ Test

Data

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
» Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything "ham” gets 66%, so a classifier that gets 70% isn’t very good...

» For real research, usually use previous work as a (strong) baseline

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

-

~

free
YOUR NAME
MISSPELLED
FROM FRIEND

PIXEL-7,12
PIXEL-7,13

SPAM
or

“2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

Inputs are feature values

Each feature has a weight

Sum is the activation

sctvationeye) = X wi o) = 1)
G

If the activation is:

%

= Positive, output(+1
= Negative, output -

7,

LJ

5/}&1/

he

M
!

DANG
Do NeT
ToucH

R

Weights

= Binary case: compare features to a weight vector

= Learning: figure out the weight vector from examples

- N
free 4
YOUR_NAME =1
“—————i§::7MISSPELLED 1
FROM_FRIEND : -3 ?1]
S e

f (@2
Dot product@ositive

means the positive class

~

~
free Q 2
YOUR NAME : O
MISSPELLED : 2
FROM FRIEND : 0

~
free
YOUR NAME
MISSPELLED

~

FROM FRIEND :

J

PP 2o

/

Decision Rules

Binary Decision Rule

= In the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane
* One side corresponds t
= Other corresponds t0 Y=-1

w
& 1
BIAS : -3
free : 4
money : 2 0

0 1 free

Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

w

\free : QZQ 1
money @

0 1 free

Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

9
Q 2
jC z
w ° +1 = SPAM
7
Wo([Bras : -3) L 3
() | free : 4 3(\
(//? money : 2)[0
l _
. e -1 = HAM
0 1 free

Weight Updates

Learning: Binary Perceptron

= Start with weights = 0
= For each training instance:
» Classify with current weights

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights = 0
= For each training instance:
» Classify with current weights
X
y - f

it w -
< QSWWM

= If correct (i.e., y:@, no change!

» If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y"f

Examples: Perceptron

= Separable Case
1.

O
" O p
1 é Fid ;a 3 é 4

N
3

| 1 |
09 5 a B

Multiclass Decision Rule

= If we have multiple classes: = = = — =
= A weight vector for each class: 4 + T 5 L Q09 O o O
+ -+ R + + ; o
wy 4+ +

= Score (activation) of a class y:

wq - f biggest
et]
o s f —
= Prediction highest score wins
y = arg ax wy f(a;) w3 - f
w - f biggest

HJéJAA go JPJQS’?

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights

y = argmax, wy- f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

Wy = wy — f(x)

Waept = Wy + f(z)

Example: Multiclass Perceptron
guix) Jn, vO e/l)C

~ “win the vote” %[11011]/

wpoLirics ¥ WTECH
0 3 3
———| BIAS 0 1 0 —_ | BIAS : 0
win : 0 1 0 win : 0
game : O 0 -1 game : O
vote 0 1 1 vote 0
the 0 1 0 the : 0

Properties of Perceptrons

- . . Separable
Separability: true if some parameters get the training P
set perfectly correct -
- vy,
Convergence: if the training is separable, perceptron - .
will eventually converge (binary case) -
Non-separable? Non-Separable
*
- .
- %

Problems with the Perceptron

= Noise: if the data isn't separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

= Mediocre generalization: finds a
"barely” separating solution

training a—

= QOvertraining: test / held-out >
~_>raccuracy usually rises, then falls O =
= Qvertraining is a kind of overfitting 9 test
T held-out

iterations

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
o~

4.5
4tk
3.9 F
31
2.0
= |

1o

11

0.5 F

0

Non-Separable Case: Probabilistic Decision

5 0.9]0.1

How to get probabilistic decisions?

= Perceptron scoring:z = w - f(x)
= If @ very positive = want probability going to 1

" If z=w-f(z) very negative 2 want probability going to 0

= Sigmeid function

A 1D Example

P(red|x)

| 19
S
|

: almost 1.0
I
I

almost 0.0
@ @ ® o—0 00 0606 06060 @ »
\ J \ J | J L
Y Y Y
definitely blue not sure definitely red

2

probability increases exponentially
as we move away from boundary

ﬁp(red\x) :Mblue.x - /nocr:;hB
-

Wred ¥

P(red|x)

The Soft Max

ewred "L

@)red'm

T edWred'w + edWhlue T

100 red L /

ewred X —I— ewblue L

elOOwred-a: _I_ 8100 blue L

*—0 O

Kj

ewred T

P(red|z) =

elljl"ed'$ —I— e'wblue'x

looks like max, wy, - \

v

with:;
ﬁ

Py = —1|zV;w)

Logistic Regression l\

Py = +1]z;w) =

Separable Case: Deterministic Decision — Many Options

5_
5 - .
a5k
42 a5k
4L
T 2 + +
35t
ar a5t
3_
3 3 e
25}
a8 25t
2_
2_
z QO QO
15}
15} sl
‘I_
‘I_
TF O QO
05}
aar ‘F 05k
|:|_
0 ! . .
0 1 7 3 4 5 0 1 > . P .

Separable Case: Probabilistic Decision — Clear Preference

- T T - T T - T T - T T - T 1
on —t on ra on a4} on = on n
T T T T T T T T T 1

= |

Multiclass Logistic Regression

1 - J piggest

Recall Perceptron:
= A weight vector for each class: Wy

= Score (activation) of a class y:

= Prediction highest score wins ¢y = arg max Wy - f(x)
Yy

= How to make the scores into probabilities?

21,22,23 ’ Z Z9 Z Z Z 2z 2z Z Z
ngl—l—e —|—€3\€1—|—€2—|—63 el 4+ e?2 + e23
|]

orlglnal activations softmax activations

\

Best w?

= Maximum likelihood estimation:

max [l(w) = max %logP(y(i)\az(i);w)
J
—

w w

with: Py |z w) = .

= Multi-Class Logistic Regression

Best w?

= Optimization

= |.e., how do we solve;

g f) = mpx 3 o POl

Hill Climbing

= Simple, general idea
= Start wherever
» Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for
multiclass logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

Gradient Ascent

= Perform update in uphill direction for each coordinate

» The steeper the slope (i.e. the higher the derivative) the bigger the
step for that coordinate

= E.g., consider: wl,wg

= Updates: = Updates in vector notation:

w1%w1@*m w<—w+@*xv(w9(w)\\

Wo %wz—l—oz* 8w2 wl,wQTCg@/\VZﬁL%:h

= gradient

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

"= Init W

» for iter = 1, 2, ?///~—\9 vglzh
w < w+ ax Vg(w)

ap—— I\

—

: @ learning rate --- tweaking parameter that needs to be
chosen carefully

" How? Try multiple choices

" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood

Stochastic- Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)kB(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

'7"Lnit w
= for 1ter = 1,

" pick random j WW M\Wk

W — W+ a* VlogP(y(j)\az(J);w)

Mini-Batch Gradient Ascent on the Log Likelihood

- Objective
max [l(w) = max ZlogP(y(i)kB(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" nlt w

= for i1ter = 1, 2,

" pick random subset of tralning examples J
W — W+ Q * 21VlogP(y(j)\:c(j);w)

How about computing all the derivatives?

= \We'll talk about that in neural networks, which are a
generalization of logistic regression

