CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi Perceptrons and Logistic Regression

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Announcements

- Project proposals: Graded
- HW2 released -> Deadline: March 6th
- PS4 released -> Deadline: March 11th
- Instructions for Project Presentations -> New deadline: March 17th
- Project Report -> New deadline: March 20th

Last Lecture

Workflow

Possible outer-loop: Collect more data ©

Practical Tip: Baselines

• First step: get a baseline

- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Linear Classifiers

Feature Vectors

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation
$$w(x) = \sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 Positive output +1
 - Positive, output +1
 Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

Weight Updates

Learning: Binary Perceptron

w.f

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

 y^*

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$\begin{array}{c} \text{ved} y = \begin{cases} +1 & \text{if } \frac{w \cdot f(x) \ge 0}{w \cdot f(x) < 0} \\ -1 & \text{if } \frac{w \cdot f(x) < 0}{w \cdot f(x) < 0} \end{cases}$$

- If correct (i.e., $y \neq y^*$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

 w_y

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

 $y = \arg \max_y w_y \cdot f(x)$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_{y} = w_{y} - f(x)$$
$$w_{y^{*}} = w_{y^{*}} + f(x)$$

Example: Multiclass Perceptron

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Non-separable?

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out
 accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If z = w ⋅ f(x) very positive → want probability going to 1
 If z = w ⋅ f(x) very negative → want probability going to 0

A 1D Example

The *Soft* Max

$$P(\operatorname{red}|x) = \frac{e^{w_{\operatorname{red}} \cdot x}}{e^{w_{\operatorname{red}} \cdot x} + e^{w_{\operatorname{blue}} \cdot x}}$$

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

original activations

softmax activations

Best w?

Maximum likelihood estimation:

= Multi-Class Logistic Regression

Best w?

- Optimization
 - i.e., how do we solve:

$$\max_{w} \quad \underbrace{ll(w)}_{w} = \max_{w} \quad \sum_{i} \log P(\underline{y}^{(i)} | \underline{x}^{(i)}; w)$$

Hill Climbing

- Simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

• init
$$w$$

• for iter = 1, 2, ...
 $w \leftarrow w + \alpha * \nabla g(w)$

- α learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood **Objective** $\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$ q(w) \blacksquare init w• for iter = 1, 2, ... $w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)} | x^{(i)}; w)$ Justance in traigdil

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

• init
$$w$$

• for iter = 1, 2, ...
• pick random j trang instance
 $w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

• init
$$w$$

• for iter = 1, 2, ...
• pick random subset of training examples J
 $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$

How about computing all the derivatives?

 We'll talk about that in neural networks, which are a generalization of logistic regression