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Announcements

Project proposals: Graded
HW?2 released -> Deadline: March 6th
PS4 released -> Deadline: March 11th

Instructions for Project Presentations -> New deadline:
March 17t

Project Report -> New deadline: March 20th




Last Lecture

= (Classification: given inputs x, Kw
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Workflow

Phase 1: Train model on Training Data. Choice points for “tuning”

= Attributes / Features «—

L - .
= Model types: Naive Bayes vs. Perceptron vs. Logistic Regression vs. Neural'Net etc..

/-7 Model hyperparameters—

= E.g. Naive Bayes — Laplace k
= E.g. Logistic Regression — weight regularization

= E.g. Neural Net - architecture, learning rate, ...
= Make sure good performance on training data (why?)

Phase 2: Evaluate on Hold-Out Data=—

= If Hold-Out performance is close to Train performance
= We achieved good generalization, onto Phase 3! ©

» If Hold-Out performance is much worse than Train performance
=  We overfitted to the training data! ®
= Take inspiration from the errors and:

= Either: go back to Phase 1 for tuning (typically: make the model less expressive)

= Or:if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data ©
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Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
» Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything "ham” gets 66%, so a classifier that gets 70% isn’t very good...

» For real research, usually use previous work as a (strong) baseline




Linear Classifiers




Feature Vectors
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Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma



Linear Classifiers

Inputs are feature values

Each feature has a weight

Sum is the activation
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Weights

= Binary case: compare features to a weight vector

= Learning: figure out the weight vector from examples
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Decision Rules




Binary Decision Rule

= In the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane
* One side corresponds t
= Other corresponds t0 Y=-1
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Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1
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Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1
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Weight Updates




Learning: Binary Perceptron

= Start with weights = 0
= For each training instance:
» Classify with current weights

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector




Learning: Binary Perceptron

= Start with weights = 0
= For each training instance:
» Classify with current weights
X
y - f

it w -
< QSWWM

= If correct (i.e., y:@, no change!

» If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y"f




Examples: Perceptron

= Separable Case
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Multiclass Decision Rule

= If we have multiple classes: = = = — =
= A weight vector for each class: 4 + T 5 L Q09 O o O
+ -+ R + + ; o
wy 4+ +

= Score (activation) of a class y:

wq - f biggest
et ]
o s f —
= Prediction highest score wins
y = arg ax wy f(a;) w3 - f
w - f biggest

HJéJAA go JPJQS’?

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights

y = argmax, wy- f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

Wy = wy — f(x)

Waept = Wy + f(z)




Example: Multiclass Perceptron
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Properties of Perceptrons

- . . Separable
Separability: true if some parameters get the training P
set perfectly correct -
- vy,
Convergence: if the training is separable, perceptron - .
will eventually converge (binary case) -
Non-separable? Non-Separable
*
- .
- %



Problems with the Perceptron

= Noise: if the data isn't separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

= Mediocre generalization: finds a
"barely” separating solution

training a—

= QOvertraining: test / held-out >
~_>raccuracy usually rises, then falls O =
= Qvertraining is a kind of overfitting 9 test
T held-out

iterations



Improving the Perceptron




Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
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Non-Separable Case: Probabilistic Decision

5 0.9]0.1




How to get probabilistic decisions?

= Perceptron scoring:z = w - f(x)
= If @ very positive = want probability going to 1

" If z=w-f(z) very negative 2 want probability going to 0

= Sigmeid function




A 1D Example
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P(red|x)

The Soft Max
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Logistic Regression l\
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Separable Case: Deterministic Decision — Many Options
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Separable Case: Probabilistic Decision — Clear Preference
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Multiclass Logistic Regression

1 - J piggest

Recall Perceptron:
= A weight vector for each class: Wy

= Score (activation) of a class y:

= Prediction highest score wins ¢y = arg max Wy - f(x)
Yy

= How to make the scores into probabilities?
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Best w?

= Maximum likelihood estimation:

max [l(w) = max %logP(y(i)\az(i);w)
J
—

w w

with: Py |z w) = .

= Multi-Class Logistic Regression



Best w?

= Optimization

= |.e., how do we solve;

g f) = mpx 3 o POl



Hill Climbing

= Simple, general idea
= Start wherever
» Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for
multiclass logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



Gradient Ascent

= Perform update in uphill direction for each coordinate

» The steeper the slope (i.e. the higher the derivative) the bigger the
step for that coordinate

= E.g., consider: wl,wg

= Updates: = Updates in vector notation:

w1%w1@*m w<—w+@*xv(w9(w)\\

Wo %wz—l—oz* 8w2 wl,wQTCg@/\VZﬁL%:h

= gradient




Gradient in n dimensions




Optimization Procedure: Gradient Ascent

"= Init W

» for iter = 1, 2, ?///~—\9 vglzh
w < w+ ax Vg(w)

ap—— I\

—

: @ learning rate --- tweaking parameter that needs to be
chosen carefully

" How? Try multiple choices

" Crude rule of thumb: update changes w about 0.1 -1 %




Batch Gradient Ascent on the Log Likelihood




Stochastic- Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)kB(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

'7"Lnit w
= for 1ter = 1,

" pick random j WW M\Wk

W — W+ a* VlogP(y(j)\az(J);w)




Mini-Batch Gradient Ascent on the Log Likelihood

- Objective
max [l(w) = max ZlogP(y(i)kB(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" nlt w

= for i1ter = 1, 2,

" pick random subset of tralning examples J
W — W+ Q * 21VlogP(y(j)\:c(j);w)




How about computing all the derivatives?

= \We'll talk about that in neural networks, which are a
generalization of logistic regression



