
CSE 573 PMP:

Artificial Intelligence

Hanna Hajishirzi

Perceptrons and Logistic

Regression

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Announcements

 Project proposals: Graded

 HW2 released -> Deadline: March 6th

 PS4 released -> Deadline: March 11th

 Instructions for Project Presentations -> New deadline:

March 17th

 Project Report -> New deadline: March 20th

Last Lecture

 Classification: given inputs x,
predict labels (classes) y

 Naïve Bayes

 Parameter estimation:
 MLE, MAP, priors

 Laplace smoothing

 Training set, held-out set, test set

Y

F1 FnF2

Workflow

 Phase 1: Train model on Training Data. Choice points for “tuning”
 Attributes / Features

 Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..

 Model hyperparameters

 E.g. Naïve Bayes – Laplace k

 E.g. Logistic Regression – weight regularization

 E.g. Neural Net – architecture, learning rate, …

 Make sure good performance on training data (why?)

 Phase 2: Evaluate on Hold-Out Data
 If Hold-Out performance is close to Train performance

 We achieved good generalization, onto Phase 3!

 If Hold-Out performance is much worse than Train performance
 We overfitted to the training data!

 Take inspiration from the errors and:

 Either: go back to Phase 1 for tuning (typically: make the model less expressive)

 Or: if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

 Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data

Training

Data

Held-Out

Data

Test

Data

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Some (Simplified) Biology

 Very loose inspiration: human neurons

Linear Classifiers

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

f1

f2

f3

w1

w2

w3

>0?

Weights

 Binary case: compare features to a weight vector

 Learning: figure out the weight vector from examples

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive

means the positive class

Decision Rules

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

free : 4

money : 2

0 1
0

1

2

free
m

o
n
e
y

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector

Learning: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

Examples: Perceptron

 Separable Case

Multiclass Decision Rule

 If we have multiple classes:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

 Start with all weights = 0

 Pick up training examples one by one

 Predict with current weights

 If correct, no change!

 If wrong: lower score of wrong
answer, raise score of right answer

Example: Multiclass Perceptron

BIAS : 1

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1

1

0

1

1

0

-1

0

-1

-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3

1

0

1

-1

0

0

0

-1

1

0

Properties of Perceptrons

 Separability: true if some parameters get the training
set perfectly correct

 Convergence: if the training is separable, perceptron
will eventually converge (binary case)

 Non-separable?

Separable

Non-Separable

Problems with the Perceptron

 Noise: if the data isn’t separable,
weights might thrash
 Averaging weight vectors over time

can help (averaged perceptron)

 Mediocre generalization: finds a
“barely” separating solution

 Overtraining: test / held-out
accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get probabilistic decisions?

 Perceptron scoring:

 If very positive want probability going to 1

 If very negative want probability going to 0

 Sigmoid function

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially

as we move away from boundary

normalizer

The Soft Max

Best w?

 Maximum likelihood estimation:

with:

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

 Recall Perceptron:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

 How to make the scores into probabilities?

original activations softmax activations

Best w?

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Best w?

 Optimization

 i.e., how do we solve:

Hill Climbing

 Simple, general idea

 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for
multiclass logistic regression?

• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

Gradient Ascent

 Perform update in uphill direction for each coordinate

 The steeper the slope (i.e. the higher the derivative) the bigger the

step for that coordinate

 E.g., consider:

 Updates: Updates in vector notation:

with: = gradient

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …

 pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

 pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

 We’ll talk about that in neural networks, which are a

generalization of logistic regression

How about computing all the derivatives?

