
1/17/19

1

CSEP 573: Artificial Intelligence
Winter 2019

Local Search

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dan Weld

Previous Search Methods

• Blind Search
• Depth first search
• Breadth first search
• Iterative deepening search
• Uniform cost search

• Informed Search
• Best First
• A*
• Beam Search
• Hill Climbing

Heuristic =

Estimate of solution cost

Systematic

Local (Randomized)
Constraint Satisfaction (Factored)

1/17/19

2

© Daniel S. Weld
4

No

O(b^d)

O(b + N)

Beam Search
§ Idea

§ Best first but only keep N best items on
priority queue

§ Evaluation
§ Complete?

§ Time Complexity?

§ Space Complexity?

© Daniel S. Weld

7

Hill Climbing
§Idea

§ Always choose best child; no
backtracking

§ Beam search with |queue| = 1

§Problems?
§Local maxima

§Plateaus

§Diagonal ridges

“Gradient ascent”

“climbing Mount Everest in a thick fog
with amnesia”

1/17/19

3

But…

§ Simple
§ Fast
§ O(1) memory

8

In convex spaces, …

hill climbing can be

fantastic

Goal State vs. Path

• Previously: Search to find best path to goal

§ For some problems path is irrelevant.
§ E.g., 8-queens

§ Different algorithms can be used
§ Systematic Search
§ Local Search
§ Constraint Satisfaction

10

1/17/19

4

N Queens Problem

§ States

§ Operators

§ Initial

§ Goal
11

Chess board with 0 or more columns
having a queen, not attacking each other

Add a nonattacking queen

No queens

N queens

Place N queens so they don’t attack each other
(i.e. not on same row, same col, same diagonal)

N Queens Problem

§ States

§ Operators

§ Initial

§ Goal

12

Chess board with exactly N queens, one

per column – possibly attacking each other

Move a queen

Random assignment of N

No attacking queens

Place N queens so they don’t attack each other

(i.e. not on same row, same col, same diagonal)

1/17/19

5

Local search algorithms

§ State space = set of "complete" configurations
§ Find configuration satisfying constraints,

§ e.g., all n-queens on board, no attacks
§ In such cases, we can use local search algorithms
§ Keep a single "current" state, try to improve it.

§ E.g., by hill climbing
§ Very memory efficient

§ duh - only remember current state

Trivial Algorithms

§ Random Sampling
§ Generate a state randomly

§ Random Walk
§ Randomly pick a neighbor of the current state

§ Why even mention these?
§ Both algorithms asymptotically complete.

§ http://projecteuclid.org/download/pdf_1/euclid.aop/1176996718 for Random Walk

© Mausam
16

http://projecteuclid.org/download/pdf_1/euclid.aop/1176996718

1/17/19

6

Need Heuristic Function

§ Assume each time we move a queen, we don’t create
new problems

§ h = number of pairs of queens attacking each other
§ h = 17 for the above state 19

What can we relax?

Hill-climbing search: 8-queens

A local minimum with h = 1

Bummer

Result of hill-climbing
in this case…

1/17/19

7

Hill-climbing on 8-Queens

§ Randomly generated 8-queens starting states…

§ 14% the time it solves the problem

§ 86% of the time it get stuck at a local minimum

§ However…
§ Takes only 4 steps on average when it succeeds

§ And 3 on average when it gets stuck

§ (for a state space with 8^8 =~17 million states)

21

Escaping Shoulders: Sideways Move
§ If no downhill (uphill) moves, allow sideways moves

in hope that algorithm can escape
§ Must limit the number of possible sideways moves to avoid

infinite loops

§ For 8-queens
§ Allow sideways moves with limit of 100
§ Raises percentage of problems solved from 14 to 94%

§ However….
§ 21 steps for every successful solution
§ 64 for each failure

22

1/17/19

8

Tabu Search
§ Prevent returning quickly to the same state
§ Keep fixed length queue (“tabu list”)
§ Add most recent state to queue; drop oldest
§ Never move to a tabu state

§ Properties:
§ As the size of the tabu list grows, hill-climbing will

asymptotically become “non-redundant” (won’t look at the
same state twice)

§ In practice, a reasonable sized tabu list (say 100 or so)
improves the performance of hill climbing in many problems

23

Escaping Local Optima - Enforced Hill Climbing

§ Perform breadth first search from a local optima
§ to find the next state with better h function

§ Typically,
§ prolonged periods of exhaustive search
§ bridged by relatively quick periods of hill-climbing

§ Middle ground b/w local and systematic search

© Mausam 24

1/17/19

9

Can we do better?

25

Hill Climbing: Stochastic Variations
àWhen the state-space landscape has local minima, any

search that moves only in the greedy direction cannot be
complete

àRandom walk, on the other hand, is
asymptotically complete

Idea: Combine random walk & greedy hill-climbing

26

At each step do one of the following:
§ Greedy: With prob p move to the neighbor with largest value
§ Random: With prob 1-p move to a random neighbor

1/17/19

10

Hill-climbing with random restarts
§ If at first you don’t succeed, try, try again!

§ Different variations
§ For each restart: run until termination vs. run for a fixed time

§ Run a fixed number of restarts or run indefinitely

§ Analysis
§ Say each search has probability p of success

§ E.g., for 8-queens, p = 0.14 with no sideways moves

§ Expected number of restarts?

§ Expected number of steps taken? 27

Restarts 0 2 4 8 16 32 64
Success? 14% 36% 53% 74% 92% 99% 99.994%

Hill-Climbing with Both
Random Walk & Random Sampling

At each step do one of the three
– Greedy: move to the neighbor with largest value
– Random Walk: move to a random neighbor
– Random Restart: Start over from a new, random state

© Mausam 28

Use this algorithm!

1/17/19

11

Simulated Annealing
written to find minimum value solutions

function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem

schedule, a mapping from time to temperature
local variables: current, a node.

next, a node.
T, a “temperature” controlling the prob. of downward steps

current ¬ MAKE-NODE(INITIAL-STATE[problem])
for t ¬ 1 to ∞ do

T ¬ schedule[t]
if T = 0 then return current
next ¬ a randomly selected successor of current
∆E ¬ VALUE[next] - VALUE[current]
if ∆E > 0 then current ¬ next
else current ¬ next only with probability e∆E /T 30

if ΔE<0 then current ß next
else current ß next only with probability e-ΔE/T

Physical Interpretation of Simulated Annealing

§ A Physical Analogy:
§ Imagine letting a ball roll downhill on the function surface
§ Now shake the surface, while the ball rolls,
§ Gradually reducing the amount of shaking

31

Minimization (not max)

1/17/19

12

Physical Interpretation of Simulated Annealing

§ A Physical Analogy:
§ Imagine letting a ball roll downhill on the function surface
§ Now shake the surface, while the ball rolls,
§ Gradually reducing the amount of shaking

32

Physical Interpretation of Simulated Annealing

§ A Physical Analogy:
§ Imagine letting a ball roll downhill on the function surface
§ Now shake the surface, while the ball rolls,
§ Gradually reducing the amount of shaking

33

1/17/19

13

Physical Interpretation of Simulated Annealing

§ A Physical Analogy:
§ Imagine letting a ball roll downhill on the function surface
§ Now shake the surface, while the ball rolls,
§ Gradually reducing the amount of shaking

34

Physical Interpretation of Simulated Annealing

§ A Physical Analogy:
§ Imagine letting a ball roll downhill on the function surface
§ Now shake the surface, while the ball rolls,
§ Gradually reducing the amount of shaking

§ Annealing = physical process of cooling a liquid à frozen
§ simulated annealing:

§ free variables are like particles
§ seek “low energy” (high quality) configuration
§ slowly reducing temp. T with particles moving around randomly35

1/17/19

14

Temperature T

§ high T: probability of “locally bad”move is higher
§ low T: probability of “locally bad”move is lower
§ typically, T is decreased as the algorithm runs longer
§ i.e., there is a “temperature schedule”

36

Simulated Annealing in Practice

§ Method proposed in 1983 by IBM researchers for

solving VLSI layout problems (Kirkpatrick et al,

Science, 220:671-680, 1983).

Theoretically will always find the global optimum

§ Other applications: Traveling salesman, Graph
partitioning, Graph coloring, Scheduling, Facility
Layout, Image Processing, …

§ Useful for some problems, but can be very slow

…Because T must be decreased very gradually

in order to assure optimality
37

1/17/19

15

Local beam search
§ Idea: Keeping only one node in memory is an

extreme reaction to memory problems.

§ Keep track of k states instead of one
§ Initially: k randomly selected states
§ Next: determine all successors of k states
§ If any of successors is goal ® finished
§ Else select k best from successors and repeat

38

Local Beam Search (contd)

§ Not the same as k random-start searches run in parallel!
§ Searches that find good states recruit other searches to join

them

§ Problem: quite often, all k states end up on same local hill
§ Idea: Stochastic beam search

§ Choose k successors randomly, biased towards good ones

§ Observe the close analogy to natural selection!

39

1/17/19

16

How to Make Search More … Exciting?

40

…And Be Scholarly!

41

1/17/19

17

Genetic algorithms
§ Local beam search, but…

§ A successor state is generated by combining two parent states

§ Start with k randomly generated states (population)

§ A state is represented as a string over a finite alphabet
(often a string of 0s and 1s)

§ Evaluation function (fitness function). Higher = better

§ Produce the next generation of states by selection,
crossover, and mutation

Gradient Descent

Assume we have a continuous function: f(x1,x2,…,xN)
and we want minimize over continuous variables X1,X2,..,Xn

1. Compute the gradients for all i: ¶f(x1,x2,…,xN) /¶xi

2. Take a small step downhill in the direction of the gradient:

xi ß xi - λ¶f(x1,x2,…,xN) /¶xi

3. Repeat.

• How to select step size, λ
– Line search: successively double
– until f starts to increase again

46

1/17/19

18

Higher Order Derivatives

‹#›

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

Assume function can be locally approximated with quadratic

Use both first & second derivatives

1/17/19

19

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

20

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method

§ At each step:

§ Requires 1st and 2nd derivatives
§ Quadratic convergence

)(
)(

1
k

k
kk xf

xfxx
¢¢
¢

-=+

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

21

Newton’s Method in
Multiple Dimensions

§ Replace 1st derivative with gradient,
2nd derivative with Hessian

÷
÷

ø

ö

ç
ç

è

æ
=

÷
÷

ø

ö

ç
ç

è

æ
=Ñ

¶

¶
¶¶

¶

¶¶
¶

¶

¶

¶
¶

¶
¶

2

22

2

2

2

),(

y
f

yx
f

yx
f

x
f

y
f
x
f

H

f

yxf

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method in
Multiple Dimensions

§ Replace 1st derivative with gradient,
2nd derivative with Hessian

§ So,

§ Tends to be extremely fragile unless
function very smooth and starting close to
minimum

)()(11 kkkk xfxHxx !!!!
Ñ-= -

+

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

22

Problem With Steepest Descent

Slide from Princeton COS323 / Szymon Rusinkiewicz

