CSEP 573: Artificial Intelligence

Winter 2019

Local Search

Dan Weld

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Previous Search Methods

Systematic

« Blind Search

Depth first search
Breadth first search
lterative deepening search
Uniform cost search
* Informed Search

* Best First Yy

e 580,),;Ze\\

« Beam Search 7

» Hill Climbing Yt

Local (Randomized)
Constraint Satisfaction (Factored)

1/17/19

Beam Search

= |dea

» Best first but only keep N best items on
priority queue

= Evaluation
= Complete?

» Time Complexity?

» Space Complexity?

© Daniel S. Weld

HI” Cllmblng "Gradient ascent”

=|dea

= Always choose best child; no
backtracking

= Beam search with |queue| =1
*Problems?

*L ocal maxima _/‘J\/\/V\/\J\

L

=sPlateaus

=Diagonal ridges , /W !

A Danial S \ald

1/17/19

1/17/19

But...

= Simple
= Fast
= O(1) memory

Goal State vs. Path

* Previously: Search to find best path to goal

» For some problems path is irrelevant.
» E.g., 8-queens

= Different algorithms can be used

» Systematic Search
= |ocal Search
= Constraint Satisfaction

1/17/19

N Queens Problem

Place N queens so they don’t attack each other
(i.e. not on same row, same col, same diagonal)

= States
Chess board with 0 or more columns

having a queen, not attacking each other
= Operators

Add a nonattacking queen
= |nitial
No queens

= Goal
N queens

N Queens Problem

Place N queens so they don’t attack each other
(i.e. not on same row, same col, same diagonal)

= States
Chess board with exactly N queens, one

per column — possibly attacking each other
» Operators

Move a queen
= |nitial

Random assignment of N
» Goal

No attacking queens

Local search algorithms

State space = set of "complete" configurations
Find configuration satisfying constraints,

» e.g., all n-queens on board, no attacks

In such cases, we can use local search algorithms
= Keep a single "current” state, try to improve it.

= E.g., by hill climbing

Very memory efficient

= duh - only remember current state

Trivial Algorithms

= Random Sampling Vil i
. L LSS LTS
Generate a state randomly///r;{?///////////
= Random Walk [LS ”/ // LS

= Randomly pick a neighbor of the current state

= Why even mention these?
= Both algorithms asymptotically complete.

= http://projecteuclid.org/download/pdf 1/euclid.aop/1176996718 for Random Walk
16

© Mausam

1/17/19

http://projecteuclid.org/download/pdf_1/euclid.aop/1176996718

Need Heuristic Function

18-14 13-14
16 15.14-16
14 |[§8| 18 15 i3 14

14 w 16 16

w 17 w 16
W61 = 551 WS W
W <

18

14 17.14-18

What can we relax?
= Assume each time we move a queen, we don’t create
new problems
= h =number of pairs of queens attacking each other

» h =17 for the above state

19

Hill-climbing search: 8-queens

_IIII

Result of hill-climbing
in this case...

%‘5«\“\6(

A local minimum with h = 1

1/17/19

Hill-climbing on 8-Queens

= Randomly generated 8-queens starting states...
= 14% the time it solves the problem
= 86% of the time it get stuck at a local minimum

= However...
= Takes only 4 steps on average when it succeeds
= And 3 on average when it gets stuck
= (for a state space with 8,8 =~17 million states)

21

Escaping Shoulders: Sideways Move

= |f no downhill (uphill) moves, allow sideways moves
in hope that algorithm can escape

= Must limit the number of possible sideways moves to avoid
infinite loops

= For 8-queens

= Allow sideways moves with limit of 100
= Raises percentage of problems solved from 14 to 94%

= However....

= 21 steps for every successful solution
= 64 for each failure

22

1/17/19

Tabu Search

Prevent returning quickly to the same state

Keep fixed length queue (“tabu list”)

Add most recent state to queue; drop oldest
= Never move to a tabu state

Properties:

= As the size of the tabu list grows, hill-climbing will
asymptotically become “non-redundant” (won’t look at the
same state twice)

» |n practice, a reasonable sized tabu list (say 100 or so)

improves the performance of hill climbing in many problems
23

Escaping Local Optima - Enforced Hill Climbing

= Perform breadth first search from a local optima
= to find the next state with better h function

= Typically,
= prolonged periods of exhaustive search

= bridged by relatively quick periods of hill-climbing

= Middle ground b/w local and systematic search

© Mausam 24

1/17/19

Can we do better?

25

Hill Climbing: Stochastic Variations

—>When the state-space landscape has local minima, any
search that moves only in the greedy direction cannot be
complete

—>Random walk, on the other hand, is
asymptotically complete

Idea: Combine random walk & greedy hill-climbing

At each step do one of the following:
= Greedy: With prob p move to the neighbor with largest value
= Random: With prob 1-p move to a random neighbor

26

1/17/19

Hill-climbing with random restarts %ﬁ?

= |f at first you don’t succeed, try, try again!
= Different variations

= For each restart: run until termination vs. run for a fixed time

» Run a fixed number of restarts or run indefinitely

= Analysis
= Say each search has probability p of success
= E.g., for 8-queens, p = 0.14 with no sideways moves

= Expected number of restarts?

Success? 14% 36% 53% 74% 92% 99% 99.994%

* Expected number of steps taken? .

Hill-Climbing with Both
Random Walk & Random Sampling

At each step do one of the three
— Greedy: move to the neighbor with largest value
— Random Walk: move to a random neighbor
— Random Restart: Start over from a new, random state

Se
W,
N a/QO/-'
/fb’h/

© Mausam 28

1/17/19

10

Simulated Annealing

written to find minimum value solutions
function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem
schedule, a mapping from time to temperature
local variables: current, a node.

next, a node.
T, a “temperature” controlling the prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem])

fort < 1toeodo
T «—schedule[t]
if T =0 then return current
next <— a randomly selected successor of current
AE <— VALUE[next] - VALUE[current]
if AE<O then current < next

else current € next only with probability e2E/T 30

Physical Interpretation of Simulated Annealing

(‘\O\ m@%\

= A Physical Analogy: ‘\,_\ﬂ.\m\za\'\oﬂ

= I[magine letting a ball roll downhill on the function surface
= Now shake the surface, while the ball rolls,
= Gradually reducing the amount of shaking

31

1/17/19

11

Physical Interpretation of Simulated Annealing

= A Physical Analogy:
= Imagine letting a ball roll downhill on the function surface
= Now shake the surface, while the ball rolls,

= Gradually reducing the amount of shaking

N

N

32

Physical Interpretation of Simulated Annealing

= A Physical Analogy:
= I[magine letting a ball roll downhill on the function surface
= Now shake the surface, while the ball rolls,

= Gradually reducing the amount of shaking

AN

N

33

1/17/19

12

Physical Interpretation of Simulated Annealing

= A Physical Analogy:
= Imagine letting a ball roll downhill on the function surface
= Now shake the surface, while the ball rolls,

= Gradually reducing the amount of shaking

N
N

34

Physical Interpretation of Simulated Annealing

= A Physical Analogy:
= |[magine letting a ball roll downhill on the function surface
= Now shake the surface, while the ball rolls,

= Gradually reducing the amount of shaking

\W/\/

= Annealing = physical process of cooling a liquid = frozen

= simulated annealing:
= free variables are like particles
» seek “low energy” (high quality) configuration

= slowly reducing temp. T with particles moving around rar315domly

1/17/19

13

Temperature T

high T: probability of “locally bad” move is higher
low T: probability of “locally bad” move is lower
typically, T is decreased as the algorithm runs longer
i.e., there is a “temperature schedule”

N~

36

Simulated Annealing in Practice

= Method proposed in 1983 by IBM researchers for
solving VLSI layout problems (Kirkpatrick et al,
Science, 220:671-680, 1983).

Theoretically will always find the global optimum

= Other applications: Traveling salesman, Graph
partitioning, Graph coloring, Scheduling, Facility
Layout, Image Processing, ...

= Useful for some problems, but can be very slow

...Because T must be decreased very gradually

in order to assure optimality
37

1/17/19

14

Local beam search

= |dea: Keeping only one node in memory is an
extreme reaction to memory problems.

= Keep track of k states instead of one
= |nitially: k randomly selected states
= Next: determine all successors of k states
= |f any of successors is goal — finished

= Else select k best from successors and repeat

38

Local Beam Search (contd)

Not the same as k random-start searches run in parallel!

Searches that find good states recruit other searches to join
them

Problem: quite often, all k states end up on same local hill
Idea: Stochastic beam search

= Choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

39

1/17/19

15

How to Make Search More ... Exciting?

..
gNC

RUTHSe
NCHCLOPEDI)

...And Be Scholarly!
—
“THE ORIGIN OF SPECIES

1/17/19

16

Genetic algorithms

» |Local beam search, but...
= A successor state is generated by combining two parent states

= Start with k randomly generated states (population)

= A state is represented as a string over a finite alphabet
(often a string of Os and 1s)

= Evaluation function (fitness function). Higher = better

* Produce the next generation of states by selection,
crossover, and mutation

Gradient Descent

Assume we have a continuous function: f(x4,xa,...,Xn)
and we want minimize over continuous variables X1,X2,..,.Xn

1. Compute the gradients for all i: 0f(x1,X5, ..., XN) /0X;

2. Take a small step downhill in the direction of the gradient:
Xj <« Xi - Aaf(x1,X2, .. .,XN) /aX,'

3. Repeat.

* How to select step size, A
— Line search: successively double
— until f starts to increase again N

1/17/19

17

Higher Order Derivatives

Negative curvature = No curvature Positive curvature

Newton’s Method

Assume function can be locally approximated with quadratic

Use both first & second derivatives

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

18

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

19

Newton’s Method

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method

= At each step:
f'(x,)
Kis1 = X — f”(xk)
k

= Requires 1t and 2"d derivatives
= Quadratic convergence

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

20

Newton’s Method in
Multiple Dimensions

= Replace 15t derivative with gradient,
2nd derivative with Hessian

Jf(x,)

A
£}

o’ f o> f
a2 oxdy
H= o f o f
oxdy oy

Slide from Princeton COS323 / Szymon Rusinkiewicz

Newton’s Method in

Multiple Dimensions
= Replace 15t derivative with gradient,
2"d derivative with Hessian
= So,
X1 =X, _H_l()_ék)vf()_ék)

» Tends to be extremely fragile unless
function very smooth and starting close to
minimum

Slide from Princeton COS323 / Szymon Rusinkiewicz

1/17/19

21

1/17/19

Problem With Steepest Descent

Slide from Princeton COS323 / Szymon Rusinkiewicz

22

